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Abstract: Quantile regression has become a standard modern econometric method because of its 

capability to investigate the relationship between economic variables at various quantiles. The 

econometric method of Markov-switching regression is also considered important because it can 

deal with structural models or time-varying parameter models flexibly. A combination of these two 

methods, known as “Markov-switching quantile regression (MSQR),” has recently been proposed. 

Liu (2016) and Liu and Luger (2017) propose MSQR models using the Bayesian approach whereas 

Ye et al.’s (2016) proposal for MSQR models is based on the classical approach. In our study, we 

extend the results of Ye et al. (2016). First, we propose an efficient estimation method based on the 

expectation-maximization algorithm. In our second extension, we adopt the quasi-maximum 

likelihood approach to estimate the proposed MSQR models unlike the maximum likelihood 

approach that Ye et al. (2016) use. Our simulation results confirm that the proposed expectation-

maximization estimation method for MSQR models works quite well at all quantiles, even with 

sample sizes as small as 200. 
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1. Introduction 
 

Quantile regression originally developed by Koenker and Bassett (1978) has become a 

popular econometric method for better understanding the relationship among 

economic/financial variables. Its popularity is mainly because of its flexibility which allows 

researchers to investigate the relationship between economic variables not only at the center 

but also over many different quantiles and, therefore, the entire conditional distribution of 

the dependent variable. During the early development stages of the quantile regression 

method, the main focus was on how to analyze cross-section data. However, its 

development has subsequently been extended to panel as well as time-series data. Some 

selected papers in the time-series domain are Koenker and Xiao (2004, 2006), Galvao 

(2009), Xiao (2009), Galvao et al. (2009, 2011), Cho et al. (2015), and White et al. (2015). 

In the time-series domain, there has been another important development for 

understanding the instable or dynamic relationship between economic/financial variables. A 

growing number of studies have presented empirical evidence of widespread instability (in 

the form of regime-switching or structural breaks) in univariate and multivariate 

macroeconomic time series relations; for example, Stock and Watson (1998), Diebold 

(1998), and Qu and Perron (2007). In response to this empirical evidence, researchers have 

worked intensively to develop Markov-switching models since the seminal work of 

Hamilton (1989). This approach allows the relationship between economic/financial 

variables to move from one regime to another and the dynamics are regulated by a discrete 

Markov chain with transition probabilities. If the model parameters are set in such a manner 

that the model moves to another regime and stays there forever, then the  Markov-switching 

model is specialized to the well-known structural break model pioneered by Chow (1960), 

Andrews (1993), Bai (1997), and Bai and Perron (1998). However, the main development 

of Markov-switching models has taken place only in the area of the conditional mean 

function only. 

Recently, some studies such as Liu (2016), Ye et al. (2016), and Liu and Luger 

(2017) have attempted to combine these two important methods (quantile regression and 

Markov-switching models) in a unified framework called “Markov-switching quantile 



 

 3 

regression (MSQR)” models. In these models, the coefficients in the conditional quantile 

function are allowed to move from one regime to another. On the one hand, Liu (2016) and 

Liu and Luger (2017) originally develop MSQR models in the framework of quantile 

autoregression proposed by Koenker and Xiao (2006) based on the Bayesian approach. 

Specifically, Liu (2016) allows all the quantile coefficients to be subject to Markov-

switching, whereas only the quantile location (equivalent to the unconditional mean in AR 

models) is subject to Markov-switching in Liu and Luger (2017). The Bayesian sampling 

methods used in the two studies for inference are the Metropolis-Hastings sampling and 

Gibbs sampling approaches, respectively. Meanwhile, Ye et al. (2016) independently 

develop MSQR models in the standard linear quantile regression framework; however, they 

employ the classical approach rather than the Bayesian approach, unlike the previous two 

studies. The choice of which of the two approaches (classical vs. Bayesian) to use in 

analyzing data depends mainly on both researchers’ preferences and the complexity 

involved in data processing. To the best of our knowledge, if a researcher wishes to stay 

within the classical approach and to employ MSQR models, Ye et al. (2016) is the only 

study to rely on.  

In our study, we have attempted to extend the results in Ye et al. (2016) in multiple 

ways. First, we propose an improved estimation method. It is not obviously clear in Ye et al. 

(2016) how to maximize their likelihood function. They state “We can then apply an 

optimization method to find the estimates θ̂  which maximize ( )L θ .” Because of the non-

differentiability of the quantile objective function, standard optimization methods such as 

the Newton-Raphson method cannot be applied directly. Moreover, it is not possible to use 

the typical linear programming method used in the standard linear quantile regression 

model because of the nonlinearity introduced by Markov-switching. A possible way out is 

to use the “minimax” method advanced by Komunjer (2005). Although this is feasible, it is 

fairly time-consuming according to our preliminary Monte Carlo simulations. In this paper, 

we propose a computationally efficient estimation method based on the expectation 

maximization (EM) algorithm. The proposed estimation is intuitively described as an 

iterative procedure between (i) the expectation stage in which some estimates of unknown 

state variables indicating different regimes are produced, and (ii) the maximization stage 
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which implements the standard linear quantile regression fitting with some dummy 

variables constructed from the state variables estimated in the expectation stage. The 

iterative procedure between the two stages stops when a desirable precision level is 

achieved. Hence, our proposed MSQR models can be easily estimated, for example, by the 

increasingly frequently used R program or by a typical linear programming method such as 

“qreg” in GAUSS. 

In our second extension, we adopt the quasi-maximum likelihood (QML) approach 

to estimate the proposed MSQR models unlike the ML approach used in Ye et al. (2016). 

In their paper, Ye et al. (2016) assume that the quantile error term ( u ) follows an 

asymmetric Laplace distribution (1 )exp( ( ) / ) /uαα α ρ σ σ− −  where α  is a given quantile 

index, ( )αρ •  is the usual quantile check function, and σ  is a scale parameter. In reality, the 

underlying unknown distribution for the quantile error is not necessarily given by such an 

asymmetric Laplace distribution, and model misspecification is more abundant than the 

correction specification of the error. Following the spirit of Kim and White (2003) and 

Komunjer (2005), which embrace possible conditional quantile model misspecification, we 

do not assume that the quantile error follows an asymmetric Laplace distribution. Instead, 

we employ the new family of densities called “tick-exponential,” proposed by Komunjer 

(2005) for constructing the QML function to estimate the conditional quantile function. The 

resulting QML estimator is consistent and asymptotically normal. The tick-exponential 

density does not depend on any scale parameter and therefore, our proposed method can be 

applied to the situation in which the underlying unknown density does not have any finite 

variance, which is not possible in the MSQR models in Ye et al. (2016). In the third 

extension, we allow the intercept parameter in the conditional quantile function to be 

subject to regime switching, unlike Ye et al. (2016), where it is fixed.  

The rest of the paper is structured as follows. Section 2 presents the model 

specification. We develop a QML estimation method in Section 3. Section 4 presents a 

computationally efficient and practical EM estimation method to obtain the QML estimator 

for the proposed MSQR models. Section 5 presents Monte Carlo experiments and Section 6 

concludes. 
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2. Model Specification 
 

We consider the following quantile regression model in which the conditional quantile 

parameters are subject to Markov-switching: 

 

 , ,( , )
t t ty t S t Sq x xα αβ β′=  (1) 

 , ,0 ,1(1 )
tS t tS Sα α αβ β β= − +  (2) 

 1 1Pr[ 1 | 1] Pr[ 0 | 0] ,t t t tS S p and S S q− −= = = = = =  (3) 

 

where ty  is a real-valued random variable at time t ; tx  is a 1k ×  random vector of 

exogenous or predetermined variables; ,( , )
t ty t Sq x αβ  is the α -quantile of ty  conditional on 

tx  for a given value of quantile index (0,1)α ∈ ; , tSαβ  are the unknown parameters that are 

quantile ( )α - and regime ( )tS - dependent; and the regime variable (or the state variable) tS  

takes a discrete value of zero or one, evolving according to the transition probabilities of 

equation (3), as in Hamilton (1989). Hence, the conditional quantile function in equation 

(1) is a two-state, first-order Markov-switching2  model, and the proposed model in (1) 

through (3) is called the two-state, first-order MSQR model. 

 

As briefly mentioned in Section 1, the Markov-Switching model can be specialized to the 

well-known structural break model pioneered by Chow (1960). Hence, the MSQR model 

can also be used to describe unknown structural breaks in the conditional quantile function 

as analyzed in Qu (2008) and Oka and Qu (2011) if we allow for a one-time change 

between regimes and staying in the regime ( 1p = ) during the whole sample period. If , tSαβ  

                                                 
2 Our proposed modeling approach is sufficiently general to allow (i) the state variable tS  to take 

more than two states (i.e., n  states so that tS  = 1, 2, …, n ) and (ii) the state variable tS  to depend 

on 1tS −  as well as more lags such as 2tS − , 3tS − , …, t rS − , which will produce an n -state and thr -

order MSQR model. 
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are not regime-dependent (i.e., , 0 , 1t tS Sα αβ β= == ), the MSQR model specializes to the standard 

linear quantile regression model originally proposed by Koenker and Bassett (1978). 

 

3. Estimation 
 

In the absence of regime switching in the conditional quantile parameters (i.e., 

,0 ,1α α αβ β β≡ = ), model (1) can be estimated by solving the following minimization 

programme: 

 

 
1

min ( )
T

t t
t

y x
α

α αβ
ρ β

=

′−∑  (4) 

 

where αρ  is the usual “check function” defined as ( )[ 0]( ) 1 zz zαρ α ≤= − . Alternatively, 

Komunjer (2005) estimates the model by employing the QML estimation method by 

solving the following maximization programme:  

 

 1

1
max ( ) ln ( )

T

T t
t

L T l
α

α αβ
β β−

=

≡ ∑  (5) 

 

where ( )tl ⋅  is a period-t conditional quasi-likelihood function. Komunjer (2005) shows that 

if the so-called “tick-exponential” density is used for constructing the likelihood function 

( )tl ⋅ , it will deliver consistent and asymptotically normal QML estimators. The tick-

exponential density is defined as follows: 

 

 ( ) ( )
1

0 0

( ) ( | ; )
1 1exp 1 exp 1

(1 )t t t t

t t t

t t t ty x y x

l f y I

y x y x
α α

α α

α αβ β

β β

β β
α α

−

   ′ ′− ≤ − >      

=
  ′ ′= − × − −   −   

 (6) 

 

where 1tI −  refers to information up to time 1t − . 
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 To estimate the MSQR model in equations (1)-(3) consistently, we maximize the 

likelihood function constructed by using the tick-exponential density in (6) as follows: 

 

 
,0 ,1

1
,0 ,1 ,0 ,1, , , 1

max ( , , , ) ln ( , , , )
T

T tp q t
L p q T l p q

α α
α α α αβ β

β β β β−

=

≡ ∑ , (7) 

 

where ,0 ,1( , , , )tl p qα αβ β  is the tick-exponential density for ty  conditional on 1tI − . The 

consistency and asymptotic normality of the resulting QML estimator follows from 

Komunjer (2005). However, how to construct ,0 ,1( , , , )tl p qα αβ β  is not straightforward 

because of the presence of the transition probabilities denoted by 2 ( )p qθ ′≡  in addition to 

the conditional quantile parameters denoted by 1 ,0 ,1( )α αθ β β ′≡ . In what follows, we explain 

how to appropriately derive the quasi-likelihood function ,0 ,1( , , , )tl p qα αβ β  =  

1 ,0 ,1( | ; , , , ).t tf y I p qα αβ β−  

 Consider that our model includes the unobserved state variables tS , 1, ,t T=  . 

Similar to the conventional Markov-switching models at the conditional mean function, we 

use the following two steps to determine the likelihood function:3 

 

Step 1: We construct the joint density of ty  and tS , which can be expressed as the product 

of the conditional and marginal densities as follows: 

 

 ( ) ( ) ( )1 1 1, | | , |t t t t t t t tf y S I f y S I f S I− − −=  (8) 

 

where 1tI −  is the information set up to time 1t − . 

 

Step 2: We then obtain the marginal density of ty  by integrating tS  out of the joint density 

in equation (8) by summing over all possible values of tS  as follows: 

                                                 
3 For more details of the conventional Markov-switching model at the conditional mean function, 
readers are referred to Hamilton (1989) and Kim and Nelson (1999, pp. 59-96).  
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( )
( )

( ) ( )
( ) [ ] ( ) [ ]

1
1

1
0

1

1 1
0

1 1 1 1

|

, |

| , |

| 0, Pr 0 | | 1, Pr 1|

t

t

t t

t t t
S

t t t t t
S

t t t t t t t t t t

f y I

f y S I

f y S I f S I

f y S I S I f y S I S I

−

−
=

− −
=

− − − −

=

=

= = × = + = × =

∑

∑
 (9) 

 

where  

 

 
( )

( ) ( )
,0 ,0

1

,0 ,00 0

| 0,
1 1exp 1 exp 1

(1 )t t t t

t t t

t t t ty x y x

f y S I

y x y x
α α

α αβ β
β β

α α

−

   ′ ′− ≤ − >      

=
  ′ ′= − × − −   −   

 (10) 

 

and 

 

 
( )

( ) ( )
,1 ,1

1

,1 ,10 0

| 1,
1 1exp 1 exp 1

(1 )t t t t

t t t

t t t ty x y x

f y S I

y x y x
α α

α αβ β
β β

α α

−

   ′ ′− ≤ − >      

=
  ′ ′= − × − −   −   

. (11) 

 

Therefore, the likelihood function is given by 

 

 ( ) [ ]
1

1
,0 ,1 1 1

1 0
( , , , ) ln | , Pr |

T

T t t t t t
t i

L p q T f y S i I S i Iα αβ β −
− −

= =

 
≡ = = 

 
∑ ∑ . (12) 

 

As is clear from equation (12), the likelihood function can be interpreted as the sum of the 

weighted average of the marginal densities of ty  in which the weight factors are given by 

the probabilities governing the behavior of the state variable tS . However, the derivation of 

the likelihood function is not complete as shown in equation (12) because the likelihood 

function is not yet expressed properly in terms of the transition probabilities p  and q . To 

do so, we need to calculate the weighting factors, [ ]1Pr 0 |t tS I −=  and [ ]1Pr 1 |t tS I −=  

appropriately. We employ the following filter to calculate these weighting factors: 
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Step 1: At the beginning of time t  or the t -th iteration, the probabilities [ ]1 1Pr |t tS i I− −=  for 

0, 1i=  are known. Hence, the weighting factors [ ]1Pr |t tS j I −= , sometimes called “the 

filtered probabilities,” are calculated as follows: 

 

 
[ ] [ ]

[ ] [ ]

1

1 1 1
0

1

1 1 1
0

Pr | Pr , |

Pr | Pr | ,

t t t t t
i

t t t t
i

S j I S j S i I

S j S i S i I

− − −
=

− − −
=

= = = =

= = = =

∑

∑
 (13) 

 

where [ ]1Pr |t tS j S i−= =  are the transition probabilities expressed in terms of p  and q . The 

information set 1tI −  drops out of the conditional set because of the first-order Markovian 

property. 

 

Step 2: At the end of time t , or at the end of the t -th iteration, ty  is observed. Hence, we 

can then update the probability term in the following way: 

 

 
[ ] [ ]

( ) [ ]
( ) [ ]

1
1

1

1 1
1

1 10

( , | )Pr | Pr | ,
( | )

| , Pr |
,

| , Pr |

t t t
t t t t t

t t

t t t t t

t t t t tj

f S j y IS j I S j I y
f y I

f y S j I S j I
f y S j I S j I

−
−

−

− −

− −=

=
= = = =

= =
=

= =∑
 (14) 

 

where 1{ , }t t tI I y−= . 

 

The two steps above can be iterated to obtain [ ]1Pr |t tS j I −=  for 1, ,t T=  . To start 

the filter above at time 1t = , however, we need to know the initial probability, [ ]0 0Pr |S I . 

We employ the following steady-state or unconditional probabilities of tS : 

 

 [ ]0 0
1Pr 0 |

2
pS I

p q
−

= =
− −

, (15) 
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 [ ]0 0
1Pr 1 |

2
qS I

p q
−

= =
− −

. (16) 

 

Once [ ]1Pr |t tS j I −=  for 1, ,t T=  are obtained as above, these are substituted into 

the likelihood function in equation (12), which completes the derivation of the desirable 

likelihood function. Now, it is clear that the likelihood function in equation (12) is a 

function of all the relevant parameters ,0 ,1, , ,pα αβ β  and .q 4 

 It is well known that it is not sufficient to make inferences on the model parameters 

in Markov-switching models, because researchers also wish to make inferences on the 

unobservable state variable tS . In principle, inferences on tS  can be carried out using the 

filter provided above because all required information can be gathered. Because the 

required information needed for inferences on tS  is recursively obtained by iterations 

through the sample period, not all information in the sample is used unlike inferences on 

the true model parameters. However, once the QML estimates for all model parameters are 

obtained through the procedure explained above, it is now possible to make inferences on 

tS  using all the information in the sample. Specifically, instead of estimating [ ]1Pr |t tS j I −= , 

it is possible to estimate [ ]Pr |t TS j I=  (for 1, ,t T=  ). This probability conditional on all 

information in the sample TI  is called the “smoothed probability.” We explain how to 

compute the smoothed probability below. 

 Based on full information, the joint probability that tS j=  and 1tS k+ =  can be 

calculated as follows: 

 

 

[ ] [ ] [ ]
[ ] [ ]
[ ] [ ]

[ ]
[ ] [ ] [ ]

[ ]

1 1 1

1 1

1
1

1

1
1

1

Pr , | Pr | , Pr |
Pr | Pr | ,

Pr , |
Pr |

Pr |
Pr | Pr |

Pr | .
Pr |

t t T t t T t T

t T t t t

t t t
t T

t t

t t t t
t T

t t

S j S k I S j S k I S k I
S k I S j S k I

S j S k I
S k I

S k I
S k S j S j I

S k I
S k I

+ + +

+ +

+
+

+

+
+

+

= = = = = × =
= = × = =

= =
= = ×

=
= = × =

= = ×
=

 (17) 

                                                 
4The proposed MSQR model can be easily extended to account for serially correlated data. For this, 
we need to modify the filter above using the conventional Hamilton (1989) filter. For details of the 
Hamilton filter, readers are referred to Hamilton (1989).  
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Therefore, the smoothed probability is obtained by integrating 1tS +  out from the joint 

distribution of tS  and 1tS +  in (17) as follows: 

 

 [ ] [ ]
1

1
0

Pr | Pr , |t T t t T
k

S j I S j S k I+
=

= = = =∑ . (18) 

 

Once we obtain [ ]Pr |T TS I  from the last iteration of the basic filter in equation (14),  

equations (17) and (18) can be iterated for 1, 2, ,1t T T= − −   in a backward manner.5  

 

4. EM Algorithm 
 

The previous section provides the theoretical derivation of the likelihood function for the 

QML approach based on the tick-exponential family of densities. The QML estimators for 

conditional quantiles are consistent and asymptotically normal which follows from 

Komunjer (2005). In practice, however, solving the maximization problem in equation (7) 

along with equations (8)-(16) is not straightforward because the likelihood function is not 

everywhere differentiable. 

 The practical optimization algorithm that we propose in this paper is based on some 

modification of the EM algorithm. Originally pioneered by Dempster, Laird, and Rubin 

(1977), the EM algorithm was introduced to compute maximum likelihood estimates for 

models with missing observations or unobserved variables. Hamilton (1990) then proposes 

a variant of the EM algorithm for Markov-switching models and it was subsequently 

applied in Turner, Startz, and Nelson (1989) and Engel and Hamilton (1990). 

 In this paper, we attempted to modify the EM algorithm for our Markov-switching 

quantile models. The standard EM algorithm consists of two steps: the “expectation” and 

“maximization” steps. The algorithm is carried out by an iterative process that oscillates 
                                                 
5 The smoothing algorithm derived above can be generalized to a general AR(k) model with 
Markov-switching as considered by Hamilton (1989). For more details of the generalization, see 
Hamilton (1989) and Kim and Nelson (1999, pp. 59-96).  
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between these two steps until a desirable level of precision is achieved. Suppose that θ  is 

the vector containing all the model parameters; that is, 1 2( , )θ θ θ′ ′ ′=  where 1 ,0 ,1( )α αθ β β ′≡  

and 2 ( )p qθ ′≡ . At each iteration (say, at the thk  iteration), the following operations are 

carried out: 

 

Expectation Step: The expected value of the unobserved variables tS  (denoted by 

[ ], Pr |t j t Tp S j I= = ) is calculated, provided that parameter estimates ( 1kθ − ) are obtained 

from the ( 1)thk −  maximization step, 

 

Maximization Step: The likelihood function is maximized with respect to θ , conditional 

on the expected values ,t jp  from the thk  expectation step, which results in kθ . 

 

It is well documented in the literature that, regardless of any arbitrary initial values of the 

parameter vector (denoted by 0θ ), each iteration results in a higher value of the likelihood 

function. The iterative procedure stops when either the increment of the likelihood function 

is negligible or the distance between kθ  and 1kθ −  is sufficiently close to zero. We note that 

the expectation step is essentially to compute the smoothed probabilities of the unobserved 

Markov-switching variables, which has already been explained in the previous section. 

Hence, we focus on the maximization step of the EM algorithm below. 

Let us define 1 2( )T Ty y y y ′=   and 1 2( )T TS S S S ′=  . Then, the joint density of Ty  

and TS  and the log likelihood function can be written as follows: 

 

 
1 2

1 1 2
1 1

( , ; ) ( | ; ) ( ; )

( | ; ) ( | ; )
T T T T T

T T

t t t t
t t

f y S f y S f S

f y S f S S

θ θ θ

θ θ−
= =

= ×

= ×∏ ∏
  

 

 (19) 

 1 1 2
1 1

ln ( , ; ) ln ( | ; ) ln ( | ; )
T T

T T t t t t
t t

f y S f y S f S Sθ θ θ−
= =

= +∑ ∑

  (20) 
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If TS  are observed, the parameter vector 2θ  is not relevant and the log likelihood function is 

simply maximized with respect to 1θ  only, as follows: 

 

 1

11 1

ln ( , ; ) ln ( | ; ) 0
T

T T t t

t

f y S f y Sθ θ
θ θ=

∂ ∂
= =

∂ ∂∑


  (21) 

 

In reality, TS  is not observed. Hence, as an alternative to the approach discussed in the 

previous section, one can maximize the following expected log likelihood function: 

 

 
1 1

1
1 2

( ; , ) ln ( , ; ) ( , ; )

ln ( | ; ) ( ; ) ( , ; )
T

T

k k
T T T T TS

k
T T T T TS

Q y f y S f y S

f y S f S f y S

θ θ θ θ

θ θ θ

− −

−

=

 =  

∫
∫




 

  

  

 

 (22) 

 

where the expectation is formed conditional on 1kθ − and the integral is taken over all 

possible values of 1 2( )T TS S S S ′=  ; that is, 
1 2

.S S SS TT
= ∑ ∑ ∑∫



 .  

 The first order condition for maximizing the expected log likelihood function in 

equation (22) with respect to 1θ  is given by 

 

 
1

1 1

1 1

ln ( | ; )( ; , ) ( , ; ) 0
T

k
T T kT

T TS

f y SQ y f y S
θθ θ θ

θ θ

−
−

 ∂∂  = =
∂ ∂∫











 . (23) 

 

Dividing both sides of equation (23) by 1( ; )k
Tf y θ −
  results in the following: 

 

 
1

1
1

1

ln ( | ; ) ( , ; ) 0
( ; )T

k
T T T T

kS
T

f y S f y S
f y

θ θ
θ θ

−

−

 ∂   =
∂∫











 (24) 

 

which in turns implies the following three equations in sequence: 
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 1 1

1

ln ( | ; )
( | ; ) 0,

T

T T k
T TS

f y S
f S y

θ
θ

θ
−

 ∂   =
∂∫









  (25) 

 [ ]1 1

1 1

ln ( | ; )
( | ; ) 0,

T

T
t t k

T TS
t

f y S
f S y

θ
θ

θ
−

=

∂
=

∂∑∫




  (26) 

 [ ]1
1 1

0 1 1

ln ( | ; )
( | ; ) 0,

t

T
t t k

t T
S t

f y S
f S y

θ
θ

θ
−

= =

∂
=

∂∑∑   (27) 

 

where 1( | ; )k
t Tf S y θ −
  is the smoothed probability [ ]Pr |t TS j I=  discussed in the previous 

section. When comparing equations (27) and (21), one can easily notice that the left-hand 

term of equation (27) is a weighted average of the score function, which appears on the left-

hand side of equation (21). The weights are given by 1( | ; )k
t Tf S y θ −
  which is the smoothed 

probabilities of tS  obtained from the expectation step, conditional on 1kθ −  obtained from 

the previous iteration. Therefore, it can be clearly seen that the EM algorithm computes 1
kθ  

(i.e., the estimate of 1θ  at the thk  iteration) by equating the weighted average of the score 

function to 0. 

Conditional on, tS j= , we have 

 

 ( ) ( )1 , ,ln | ; ln , ( , )
tt t t S j t t jf y S j y q xα

α αθ ϕ β== =  (28) 

 

where 

 

 
( )

( ) ( )
, ,

, ,

, ,0 0

, ( , )
1 1exp 1 exp 1

(1 )

t

t t j t t j

t S j t t j

t t j t t jy x y x

y q x

y x y x
α α

α
α α

α αβ β

ϕ β

β β
α α

=

   ′ ′− ≤ − >      

  ′ ′≡ − × − −   −   

. (29) 

 

The first-order conditions in equation (27) with respect to , jαβ , 0,1j = , are given by 

 



 

 15 

 [ ]1
1

1 0 ,

ln ( | )
( | ; ) 0

t

T
t t k

t T
t S j

f y S
f S y

α

θ
β

−

= =

∂
=

∂∑∑  . (30) 

 

which in turn implies that  

 

 ( ),

1
{ ( , )}

1
1 ( | ; ) 0

t t j

T
k

y q x t t T
t

x p S j y
α αβ

α θ −
≤

=

− = =∑  . (31) 

 

Defining 1
, ( | ; )k

t j t Tp p S j y θ −= =  , the condition in equation (31) can be equivalently written 

as follows: 

 

 ( ), , ,

,

{ ( , )} ,
{ : 0}

1 0
t j t t j t j

t j

p y p q x t t j
t t p

x p
α αβ

α ≤
∈ >

− =∑ . (32) 

 

It can be easily recognized that the equivalent condition in equation (32) is exactly 

the first-order condition for the quantile regression model where transformed variables 
*

,t t j ty p y≡ ×  and *
,t t j tx p x≡ × for ,{ : 0}t jt t p∈ >  are used as the dependent and independent 

variables, respectively. Hence, ,
k

jαβ , the solution in equation (32), can alternatively be 

obtained in the standard quantile regression by regressing *
ty  on *

tx . Hence, our EM 

algorithm can be carried out on any software in which the standard linear quantile 

regression can be implemented, such as R or GAUSS. 

We make one last comment about how to calculate the transition probabilities 

within the EM algorithm. Let us define the transition probability at the thk  iteration 

(denoted by k
jjp ) as follows: ( )

1[ | ]k k
jj t tp P S j S j−= = = . We can easily obtain k

jjp  by 

differentiating the expected log likelihood function in equation (22): 

 

 
1

1
1

1

( , | ; )
, 0,1.

( | ; )

k
t t Tk t

jj k
t Tt

p S j S j y
p j

p S j y
θ

θ

−
−

−
−

= =
= =

=
∑
∑





 (33) 
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We refer readers to Hamilton (1990) and Kim and Nelson (1999, p.59-96) for more detail 

on exactly how to derive equation (33), and on the EM algorithm in general, 

 

5. Monte Carlo Simulations 
 

To investigate the finite sample properties of the proposed estimation procedures, we carry 

out Monte Carlo experiments in this section. We generate 1,000 datasets with a sample size 

200T =  using the following data generating process: 

 

                                   2
0, 1, , ~ (0, )

t tt S t S t t ey x e e IIDNβ β σ= + + ,                                              (34) 

                              0, 0,0 0,1 1, 1,0 1,1(1 ) ; (1 )
t tS t t S t tS S S Sβ β β β β β= − + = − + ,                                 (35) 

                      1 1Pr[ 1| 1] 0.95 Pr[ 0 | 0] 0.95t t t tS S and S S− −= = = = = = ,                                 (36) 

                                                   ~ (0,2)tx IIDN ,                                                                (37) 

                             2
0,0 1,0 0,1 1,11; 1; 1; 1; 1eβ β β β σ= − = − = = = .                                              (38) 

 

For each dataset generated, we estimate the MSQR model in equations (34) to (38) by 

employing the proposed EM estimation method presented in Section 4. Our experiments 

are performed for different quantiles ( 0.1, 0.3, 0.5, 0.7, 0.9α = ). 

The simulation results are shown in Table 1, where sample means and sample 

standard deviations for each parameter, based on the generated 1,000 replications, are 

reported. Let us take a close look at the median case; 0.5α = . The true values for the low 

and high regime intercept parameters are given by 0, 0 1
tSβ = = −  and 0, 1 1

tSβ = = , respectively; 

whereas their point estimates are 1.009− and 0.990 with precision measures (standard 

deviations) 0.163 and 0.141, respectively. We also have very similar results for the slope 

parameter 1, tSβ  for the median case; the true values are 1−  and 1 as before, whereas the 

point estimates are 1.016−  and 0.990 with precision measures given by 0.098 and 0.105. 

All the point estimates are fairly close to their corresponding true values and all precision 

measures are reasonably small given that the sample size is just 200. 
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Moving to a different quantile index, say 0.1α = , one can notice that the true values 

for the low and high regime intercept parameters are given by *
0, 0 2.282

tSβ = = −  and 

*
0, 1 0.282

tSβ = = − , respectively, not the imposed values of 1−  and 1. Such a change in the 

intercept parameter is typical in any standard quantile regression because the true value of 

the intercept parameter is adjusted to reflect the varying quantile effect of the quantile error 

term. As a result, the true value of the intercept, denoted by *
0, tSβ , is calculated by 

* 1
0, 0, ( )β β α−= +Φ

t tS S , where 1( )α−Φ  is the inverse of the cumulative distribution function of 

the standard normal random variable at quantile α , and 0, tSβ is the imposed intercept 

parameter in the data generation process. For example, when 0.1α = , we have 
1(0.1) 1.282−Φ = − . Hence, with 0, 0 1

tSβ = = − , we obtain *
0, 0 2.282

tSβ = = − . When comparing the 

true values for 0.1α =  with their point estimates, they are again fairly close to each other, 

although precision measures are a little bit larger than the median case, which is also typical 

in quantile regression; precision becomes worse in either low or high quantiles compared 

with the central quantiles. 

We have qualitatively similar results for the other quantile indexes; 0.3,0.7,0.9α = . 

Hence, we can conclude that the proposed estimation procedure performs well and 

produces reasonably accurate estimates of the MSQR model even with a small sample size 

as small as 200T = . To examine the effect of larger sample sizes, we generated 1,000 

replications again, using the same model in equations (34) to (38), but with 500T = . The 

results are reported in Table 2. As expected, all point estimates are closer to their 

corresponding true values and all precision measures are smaller when the sample size 

becomes larger. 

Overall, our simulation results confirm that the proposed EM estimation method for 

MSQR models works quite well at all quantiles, even with sample sizes as small as 200.  

 

7. Conclusion 
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Quantile regression has become a standard modern econometric method because of its 

capability to investigate the relationship between economic variables at various quantiles. 

Another important econometric method is Markov-switching regression because it can deal 

with structural models or time-varying parameter models flexibly. A combination of these 

two methods, known as “MSQR,” has been recently proposed. Liu (2016) and Liu and 

Luger (2017) propose MSQR models using the Bayesian approach whereas Ye et al.’s 

(2016) proposal for MSQR models is based on the classical approach. In our study, we 

have extended the results in Ye et al. (2016) in many ways. First, we proposed an improved 

estimation method based on the EM algorithm. Consequently, our proposed MSQR models 

can be easily estimated by any software program that can estimate the standard linear 

quantile regression models, such as R or GAUSS. In our second extension, we adopted the 

QML approach to estimate the proposed MSQR models unlike the ML approach used in 

Ye et al. (2016). Hence, our framework is more general and encompasses wider conditional 

quantile functions. Finally, we allowed the intercept parameter in the conditional quantile 

function to be subject to regime switching, unlike Ye et al. (2016).  
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Table 1. Simulation results based on the EM algorithm: (i) model parameters: 

( 2
0,0 1,0 0,1 1,1-1; -1; 1; 1 ; 1eβ β β β σ= = = = = ), (ii) 200T = , (iii) number of replications = 1,000.  

 

 

Parameters 
True values Mean 

Standard 

Deviation 

0.1α =     
*
0, 0tSβ =  -2.282 -2.201 0.196 

1, 0tSβ =  -1 -1.049 0.151 

*
0, 1tSβ =  -0.282 -0.051 0.217 

1, 1tSβ =  1 1.050 0.134 

0.3α =     
*
0, 0tSβ =  -1.524 -1.511 0.149 

1, 0tSβ =  -1 -1.013 0.109 

*
0, 1tSβ =  0.476 0.511 0.144 

1, 1tSβ =  1 1.002 0.100 

0.5α =     
*
0, 0tSβ =  -1 -1.009 0.163 

1, 0tSβ =  -1 -1.016 0.098 

*
0, 1tSβ =  1 1.009 0.141 

1, 1tSβ =  1 0.990 0.105 

0.7α =     
*
0, 0tSβ =  -0.476 -0.515 0.152 

1, 0tSβ =  -1 -1.006 0.106 

*
0, 1tSβ =  1.524 1.508 0.142 

1, 1tSβ =  1 1.011 0.102 
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0.9α =     
*
0, 0tSβ =  0.2816 0.052 0.219 

1, 0tSβ =  -1 -1.052 0.132 

*
0, 1tSβ =  2.2816 2.209 0.200 

1, 1tSβ =  1 1.054 0.155 
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Table 2. Simulation results based on the EM algorithm: (i) model parameters: 

( 2
0,0 1,0 0,1 1,1-1; -1; 1; 1 ; 1eβ β β β σ= = = = = ), (ii) 500T = , (iii) number of replications = 1,000.  

 

 

Parameters 
True values Mean 

Standard 

Deviation 

0.1α =     
*
0, 0tSβ =  -2.282 -2.245 0.119 

1, 0tSβ =  -1 -1.034 0.090 

*
0, 1tSβ =  -0.282 -0.120 0.139 

1, 1tSβ =  1 1.039 0.083 

0.3α =     
*
0, 0tSβ =  -1.524 -1.524 0.092 

1, 0tSβ =  -1 -1.006 0.062 

*
0, 1tSβ =  0.476 0.500 0.090 

1, 1tSβ =  1 1.004 0.062 

0.5α =     
*
0, 0tSβ =  -1 -1.009 0.083 

1, 0tSβ =  -1 -1.002 0.057 

*
0, 1tSβ =  1 1.003 0.084 

1, 1tSβ =  1 1.001 0.060 

0.7α =     
*
0, 0tSβ =  -0.476 -0.505 0.092 

1, 0tSβ =  -1 -1.005 0.061 

*
0, 1tSβ =  1.524 1.517 0.089 

1, 1tSβ =  1 1.006 0.064 



 

 25 

0.9α =     
*
0, 0tSβ =  0.2816 0.121 0.132 

1, 0tSβ =  -1 -1.039 0.083 

*
0, 1tSβ =  2.2816 2.235 0.119 

1, 1tSβ =  1 1.036 0.092 

 

 

 

 


