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Abstract
We consider estimation of and inference on the nonlinear autoregressive distributed lag (NARDL)

model, which is a single-equation error correction model that allows for asymmetry with respect to
positive and negative changes in the explanatory variable(s). We show that the NARDL model exhibits
an asymptotic singularity issue that frustrates efforts to derive the asymptotic properties of the single-step
estimator. Consequently, we propose a two-step estimation framework, in which the parameters of
the long-run relationship are estimated first using the fully-modified least squares estimator before the
dynamic parameters are estimated by OLS in the second step. We show that our two-step estimators
are consistent for the parameters of the NARDL model and we derive their limit distributions. We also
develop Wald test statistics for the hypotheses of short-run and long-run parameter asymmetry. We
demonstrate the utility of our framework with an application to postwar dividend-smoothing in the U.S.
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1 Introduction

The Nonlinear Autoregressive Distributed Lag (NARDL) model of Shin, Yu, and Greenwood-Nimmo (2014,

hereafter SYG) is an asymmetric generalization of the ARDL model of Pesaran and Shin (1998) and

Pesaran, Shin, and Smith (2001). Specifically, the NARDL model is a single-equation error correction

model that can accommodate asymmetry in the long-run equilibrium relationship and/or the short-run

dynamic coefficients via the use of partial sum decompositions of the independent variable(s). Due to

its simplicity and ease of interpretation, uptake of the NARDL model in applied research has been rapid,

with applications in diverse fields including criminology (Box, Gratzer, and Lin, 2018), economic growth

(Eberhardt and Presbitero, 2015), energy economics (Greenwood-Nimmo and Shin, 2013; Hammoudeh,

Lahiani, Nguyen, and Sousa, 2015), exchange rates and trade (Verheyen, 2013; Brun-Aguerre, Fuertes,

and Greenwood-Nimmo, 2017), financial economics (He and Zhou, 2018), health economics (Barati and

Fariditavana, 2018) and the economics of tourism (Süssmuth and Woitek, 2013), to list only a few.1 However,

despite its growing popularity, the theoretical foundations for estimation of and inference on the NARDL

model have yet to be fully developed. It is this issue that we address.

SYG show that the parameters of the NARDL model can be estimated in a single step by ordinary least

squares (OLS), as is the case in the linear ARDL model. However, the authors note that the positive and

negative partial sums of the independent variable in the NARDL model are dominated by deterministic time

trend terms that are asymptotically perfectly collinear. These collinear trend terms introduce an asymptotic

singularity problem that represent a substantial barrier to the development of asymptotic theory for the single

step estimation framework, frustrating efforts to derive the limit distribution of the estimator. Consequently,

SYG do not provide asymptotic theory but rather conduct Monte Carlo simulations to validate the properties

of the single-step OLS estimator in finite samples.

In order to overcome this asymptotic singularity problem, we begin by reparameterizing the asymmetric

long-run relationship embedded in the NARDL model. In a bivariate model with a scalar dependent variable,

yt, and a scalar explanatory variable, xt, the asymmetric long-run relationship is usually expressed among

the level of the dependent variable, yt, and the positive and negative cumulative partial sum processes of

the dependent variable, x+
t and x−t , respectively, the latter of which share asymptotically collinear time

trends. Note, however, that the long-run relationship can be expressed equivalently making use of a simple

1At the time of writing, SYG has been cited more than 700 times according to Google Scholar.
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one-to-one transformation as a relationship between yt, xt and x+
t . By excluding one partial sum process in

this way, the asymptotic singularity issue in the long-run levels relationship is resolved. It is important to

realize, however, that although this reparameterization is sufficient to resolve the singularity in the long-run

relationship, it is insufficient to resolve the singularity problem from the single-step NARDL estimator.

In fact, we show that it introduces a further asymptotic singularity problem, once again frustrating efforts

to obtain the necessary limit theory (see Appendix A.2 for details). Our solution, therefore, is to adopt a

two-step estimation framework for the NARDL model.

In the first step, the parameters of the transformed long-run relationship are estimated using any consistent

estimator with a convergence rate faster than the square root of the sample size, T 1/2. We demonstrate that

it is possible to consistently estimate the long-run parameters in the first step by OLS but that this approach

suffers several drawbacks, most notably that the limit distribution of the OLS estimators is asymptotically

non-normal and depends on nuisance parameters. Consequently, we advocate the use of the fully-modified

OLS (FM-OLS) estimator of Phillips and Hansen (1990) in the first step, which we find follows an asymptotic

mixed normal distribution that facilitates standard inference on the long-run parameters. Furthermore, unlike

OLS, FM-OLS is known to be robust to potential endogeneity among the regressors and to serial correlation

in the error terms. Given the super-consistency of the long-run parameter estimator from the first step, the

error correction term can be treated as known in the second step regression, where OLS provides a consistent

and asymptotically normal estimator for the short-run dynamic parameters.

Next, we develop Wald tests that can be used to evaluate restrictions on the short- and long-run parameters.

In both the short- and long-run cases, we demonstrate that the null distribution of the Wald statistics weakly

converges to a chi-squared distribution, once again facilitating standard inference.

We conduct a suite of Monte Carlo simulations to investigate the properties of our estimators and test

statistics. We find that the finite sample bias of the estimators of both the long- and short-run parameters

is modest and diminishes rapidly as the sample size increases. Likewise, the mean squared error of the

estimators quickly falls as the sample size grows. The Wald tests of both the short- and long-run parameters

have high power and exhibit only mild size distortions in small samples that are rapidly corrected at larger

sample sizes. Overall, our simulation results lend robust support to our theoretical findings.

We apply our technique to the analysis of postwar dividend-smoothing in the US. Following the seminal

study on dividend policy by Lintner (1956), it is widely believed that firms gradually adjust their dividends

in response to changes in earnings toward their long-run target payout ratio. Compelling evidence of this
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effect has been documented by Brav, Graham, Harvey, and Michaely (2005) on the basis of a survey of 384

financial executives, the results of which show that the link between dividends and earnings is relatively

weak, with payout policy being subject to strategic considerations including signalling effects.

Our contribution to this literature is to test whether dividend policy may be asymmetric with respect to

positive and negative changes in earnings. We fit a fourth order NARDL model to quarterly data on real

dividends and real earnings for the S&P 500 over the period 1946Q1 to 2006Q4. Our model allows for

asymmetry in the long-run equilibrium relationship and in the short-run dynamics. We consider both the

single-step estimation procedure advanced by SYG and our newly-developed two-step procedure. We find

that, in long-run equilibrium, executives pass earnings increases through to dividends slightly more strongly

than earnings decreases, although neither the single-step nor the two-step estimation results provide any

support for the existence of short-run dynamic asymmetry. The magnitude of this long-run asymmetry is

relatively small but it is economically significant, which is consistent with existing evidence of asymmetric

aggregate payout policy documented by Brav et al. (2005), among others.

Furthermore, our estimation results shed light on the performance of the single-step estimation procedure

of SYG relative to our two-step framework. In practice, we find that both procedures yield qualitatively and

quantitatively similar estimation and testing results. This indicates that they may be used interchangeably in

practice. However, we conjecture that, when working with small samples, the two-step approach may yield

greater precision in the estimation of the long-run parameters and this may improve one’s ability to detect

long-run asymmetry. This represents an important practical benefit of our two-step estimation framework,

particularly given that NARDL models are often used in macroeconomic applications, where a low sampling

frequency and relatively short time period necessitate the use of small samples.

This paper proceeds in 7 sections. In Section 2, we introduce the NARDL model in its original form

and demonstrate how the asymptotic singularity problem arises. In Section 3, we introduce our two-step

estimation framework, and derive the asymptotic properties of the estimators. In Section 4, we develop

Wald tests for the null hypotheses of short- and long-run symmetry against the alternative hypotheses of

asymmetry. In Section 5, we scrutinize the finite sample properties of the estimators and test statistics using

Monte Carlo simulations. Section 6 is devoted to our empirical application. We conclude in Section 7.

Additional proofs are collected in an Appendix.
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2 The NARDL Model in the Prior Literature

Consider the NARDL(p, q) process:

yt =

p∑
j=1

φj∗yt−j +

q∑
j=0

(θ+′
j∗x

+
t−j + θ−′j∗x

−
t−j) + et, (1)

where xt ∈ Rk,:

x+
t :=

t∑
j=1

∆x+
j , x−t :=

t∑
j=1

∆x−j , ∆x+
t := max[0,∆xt], and ∆x−t := min[0,∆xt],

such that ∆xt is a stationary process. Note that (1) can be re-written in error-correction form as:

∆yt = ρ∗yt−1 + θ+′
∗ x

+
t−1 + θ−′∗ x

−
t−1 + γ∗ +

p−1∑
j=1

ϕj∗∆yt−j +

q−1∑
j=0

(
π+′
j∗∆x

+
t−j + π−′j∗∆x

−
t−j

)
+ et, (2)

for some ρ∗, θ+
∗ , θ−1

∗ , γ∗, ϕj∗ (j = 1, 2, . . . , p − 1), π+
j∗, and π−j∗ (j = 0, 1, . . . , q − 1), where {et,Ft}

is a martingale difference sequence and where Ft is the smallest σ-algebra driven by {yt−1,x
+
t ,x

−
t , yt−2,

x+
t−1,x

−
t−1, . . .}. If yt is cointegrated with (x+′

t ,x
−′
t )′, then we may re-write (2) as:

∆yt = ρ∗ut−1 + γ∗ +

p−1∑
j=1

ϕj∗∆yt−j +

q−1∑
j=0

(
π+′
j∗∆x

+
t−j + π−′j∗∆x

−
t−j

)
+ et, (3)

where ut−1 := yt−1 − β+′
∗ x

+
t−1 − β

−′
∗ x
−
t−1 is the cointegrating error, β+

∗ := −(θ+
∗ /ρ∗) and β−∗ :=

−(θ−∗ /ρ∗). Note that ut is a stationary process that may be correlated with ∆xt.

The NARDL process is able to capture a cointegrating relationship between a deterministic time trend

process driven by unit-root process and other unit-root processes, possibly associated with a time trend.

Suppose that E[∆xt] ≡ 0 and that:

µ+
∗ := E[∆x+

t ] and µ−∗ := E[∆x−t ].

It follows that µ+
∗ + µ−∗ ≡ 0 by construction. Therefore, if we further let s+

t := ∆x+
t − µ+

∗ and s−t :=

∆x−t − µ−∗ , then:

x+
t = µ+

∗ t+

t∑
j=1

s+
j and x−t = µ−∗ t+

t∑
j=1

s−j . (4)
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It is clear from (4) that x+
t and x−t are deterministic time-trend processes driven by unit-root processes.

It follows that ∆yt is not necessarily distributed around zero even if xt is a unit-root process without a

deterministic trend. Note that ρ∗ := 1−
∑p

j=1 φj∗. From (1), we find that:

δ∗ := E[∆yt] = − 1

ρ∗

 q∑
j=0

(θ+
j∗)
′µ+
∗ +

q∑
j=0

(θ−j∗)
′µ−∗

 .
Therefore, if we define dt := ∆yt − δ∗, then:

yt = δ∗t+
t∑

j=1

dj , (5)

which shows that yt is a deterministic time-trend process driven by a unit-root process, if δ∗ 6= 0.

Provided that E[∆xt] = 0, then the NARDL model captures a cointegrating relationship between a

deterministic time-trend process driven by a unit-root process and a unit-root process without a deterministic

time trend. Meanwhile, if E[∆xt] 6= 0, then xt is a deterministic time-trend process driven by a unit-root

process. In this case, the model captures a cointegrating relationship between deterministic time-trend

processes driven by unit-root processes.

SYG propose to estimate the unknown parameters of (2) in a single step by OLS, and obtain the

properties of the OLS estimator by simulation because it is not straightforward to derive the limit distributions

of the single-step OLS estimator. To demonstrate this, we make the following assumptions:

Assumption 1.

(i) {(∆x′t, ut)′} is a globally covariance stationary mixing process of (k + 1) × 1 vectors of φ of size

−r/(2(r − 1)) or α of size −r/(r − 2) and r > 2;

(ii) E[∆xt] = 0, E[|∆xti|r] <∞ (i = 1, 2, . . . , k), E[|ut|r] <∞, and E[|et|2] <∞;

(iii) limT→∞ var[T−1/2
∑T

t=1(∆x′t, ut)
′] exists and is positive definite; and

(iv) for some (ρ∗,θ
+′
∗ ,θ

−′
∗ , γ∗, ϕ1∗, . . . , ϕp−1∗,π

+′
0∗ , . . . ,π

+′
q−1∗,π

−′
0∗ , . . . ,π

−′
q−1∗)

′, ∆yt is generated by

(2) such that {et,Ft} is a martingale difference sequence and Ft is the smallest σ-algebra driven by

{yt−1,x
+
t ,x

−
t , yt−2,x

+
t−1,x

−
t−1, . . .}. �
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Furthermore, for notational simplicity, we define the following:

zt :=
[
z′1t z′2t

]′
:=
[
yt−1 x+′

t−1 x−′t−1 1 ∆y′t−1 ∆x+′
t . . . ∆x+′

t−q+1 ∆x−′t . . . ∆x−′t−q+1

]′
,

where ∆yt−1 := [∆yt−1,∆yt−2, . . . ,∆yt−p+1]′. Note that zt is partitioned into nonstationary and stationary

variables. Next, z2t is further partitioned as

z2t :=
[

1 w′t

]′
:=
[

1 w′1t w′2t w′3t

]′
:=
[

1 ∆y′t−1 ∆x+′
t . . . ∆x+′

t−q+1 ∆x−′t . . . ∆x−′t−q+1

]′
.

In addition, we define:

α∗ :=
[
α′1∗ α′2∗

]′
:=
[
ρ∗ θ+′

∗ θ−′∗ γ∗ ϕ′∗ π+′
0∗ . . . π+′

q−1∗ π−′0∗ . . . π−′q−1∗

]′
,

where ϕ∗ := [ϕ1∗, ϕ2∗, . . . , ϕp−1∗]
′. With this notation in hand, the OLS estimator can be expressed as

α̂T :=

(
T∑
t=1

ztz
′
t

)−1( T∑
t=1

zt∆yt

)
= α∗ +

(
T∑
t=1

ztz
′
t

)−1( T∑
t=1

ztet

)
.

Inference on the unknown parameters using α̂T is challenging, because
∑T

t=1 ztz
′
t is asymptotically singular.

This is shown in the following lemma:

Lemma 1. Given Assumption 1:

(i)

1

T 3

T∑
t=1

zt1z
′
t1

P→M11 :=
1

3


δ2
∗ δ∗µ

+′
∗ δ∗µ

−′
∗

δ∗µ
+
∗ µ+

∗ µ
+′
∗ µ+

∗ µ
−′
∗

δ∗µ
−
∗ µ−∗ µ

+′
∗ µ−∗ µ

−′
∗

 ;

(ii)

1

T 2

T∑
t=1

z1tz
′
2t

P→M12 :=
1

2


δ∗ δ2

∗ι
′
p−1 δ∗ι

′
q ⊗ µ+′

∗ δ∗ι
′
q ⊗ µ−′

µ+
∗ δ∗µ

+
∗ ι
′
p−1 ι′q ⊗ µ+

∗ µ
+′
∗ ι′q ⊗ µ+

∗ µ
−′

µ−∗ δ∗µ
−
∗ ι
′
p−1 ι′q ⊗ µ−∗ µ+′

∗ ι′q ⊗ µ−∗ µ−′∗

 ; and
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(iii)

1

T

T∑
t=1

z2tz
′
2t

P→M22 :=



1 δ∗ι
′
p−1 ι′q ⊗ µ+′

∗ ι′q ⊗ µ−′∗

δ∗ιp−1

E[wtw
′
t]ιq ⊗ µ+

∗

ιq ⊗ µ−∗


,

where ιa is an a× 1 vector of ones. �

Lemma 1 implies that if we let DT := diag[T 3/2I2+2k, T
1/2Ip+2qk], then:

D−1
T

(
T∑
t=1

ztz
′
t

)
D−1
T

P→M∗ :=

 M11 M12

M21 M22

 , (6)

which is singular. Due to this singularity, it is difficult to derive the limit distribution of α̂T directly. To do

so would require one to derive the limit distribution of the determinant of
∑T

t=1 ztz
′
t, which is analytically

challenging. In practice, a higher-order approximation of
(∑T

t=1 ztz
′
t

)−1
would be necessary to derive the

limit distribution of the OLS estimator.

3 NARDL Estimation and Limit Distribution

In this section, we propose an analytically tractable two-step estimation procedure that draws on Engle and

Granger (1987) and Phillips and Hansen (1990) and derive the relevant limit distributions. For clarity of

exposition, we divide this section into two subsections, the first focusing on the estimation of the short-run

parameters and the second on the estimation of the long-run parameters.

3.1 Estimation of the Short-Run Parameters

Suppose that the cointegrating coefficient is known or can be estimated by an estimator with a convergence

rate faster than T 1/2. Specifically, let:

ut−1 := yt−1 − β+′
∗ x

+
t−1 − β

−′
∗ x
−
t−1, (7)
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where β+
∗ := −θ+

∗ /ρ∗ and β−∗ := −θ−∗ /ρ∗. Assuming that β+
∗ and β−∗ are known, we can re-write (2) as:

∆yt = ρ∗ut−1 + γ∗ +

p−1∑
j=1

ϕj∗∆yt−j +

q−1∑
j=0

(
π+′
j∗∆x

+
t−j + π−′j∗∆x

−
t−j

)
+ et. (8)

Note that all variables in (8) are stationary, so the unknown parameters can be estimated by OLS. If we define

ζ∗ := (ρ∗,β
′
2∗)
′ andht := (ut, z

′
2t)
′, whereβ2∗ := (γ∗, ϕ1∗, . . . , ϕp−1∗,π

+′
0∗ , . . . ,π

+′
q−1∗,π

−′
0∗ , . . . ,π

−′
q−1∗, )

′,

then (8) can be re-written as:

∆yt = ζ′∗ht + et,

and we can obtain the OLS estimator as follows:

ζ̂T :=

(
T∑
t=1

hth
′
t

)−1( T∑
t=1

ht∆yt

)
= ζ∗ +

(
T∑
t=1

hth
′
t

)−1( T∑
t=1

htet

)
. (9)

The following lemma shows the limit behaviors of the constituent components of ζ̂T :

Lemma 2. Given Assumption 1:

(i)

Γ̂T :=
1

T

T∑
t=1

hth
′
t

P→ Γ∗ :=

 E[u2
t ] E[utz

′
2t]

E[z2tut] M22

 ;

(ii) T−1/2
∑T

t=1 htet
A∼ N [0,Ω∗], where Ω∗ := E[e2

thth
′
t]; and

(iii) in the special case where E[e2
t |ht] = σ2

∗ , Ω∗ simplifies to σ2
∗Γ∗. �

We omit the proof of Lemma 2, because it is straightforward. Using Lemma 2, it is possible to derive the

limit distribution of ζ̂, which is provided in the following theorem:

Theorem 1. Given Assumption 1, if Γ∗ and Ω∗ are positive definite:

(i)
√
T (ζ̂T − ζ∗)

A∼ N(0,Γ−1
∗ Ω∗Γ

−1
∗ ); and

(ii) if it further holds that E[e2
t |ht] = σ2

∗ , then
√
T (ζ̂T − ζ∗)

A∼ N(0, σ2
∗Γ
−1
∗ ). �

Theorem 1 shows that, if there is any estimator converging to the cointegrating coefficient faster than T 1/2,

then we can use the resulting parameter estimate as if it is known.
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3.2 Estimation of the Long-Run Parameters

3.2.1 First Step Estimation by OLS

In keeping with the two-step estimation framework of Engle and Granger (1987), one may attempt to

estimate the long-run parameters by OLS. Recall that the long-run relationship may be written as

yt = α∗ + β+′
∗ x

+
t + β−′∗ x

−
t + ut. (10)

Now, define D̄T := diag[T 1/2, T 3/2I2k] and vt := (1,x+′
t ,x

−′
t )′ such that:

D̄−1
T

(
T∑
t=1

vtv
′
t

)
D̄−1
T

P→


1 1

2µ
+′
∗

1
2µ
−′
∗

1
2µ

+
∗

1
3µ

+
∗ µ

+′
∗

1
3µ

+
∗ µ
−′
∗

1
2µ
−
∗

1
3µ
−
∗ µ

+′
∗

1
3µ
−
∗ µ
−′
∗

 .

By applying Lemma 1(i) and (ii), it is straightforward to show that this is a singular matrix, which frustrates

analytical efforts to obtain the limit distribution of the OLS estimator. We proceed by re-parameterizing (10)

in the following form, which facilitates straightforward estimation of the long-run parameters:

yt = α∗ + λ
′
∗x

+
t + η′∗xt + ut, (11)

where xt ≡ x0 + x+
t + x−t , λ∗ = β+

∗ − β−∗ and η∗ = β−∗ . It follows that β+
∗ = λ∗ + η∗ and β−∗ = η∗. It

is possible to estimate %∗ :=
(
α∗,λ

′
∗,η
′
∗
)′ by OLS as follows:

%̂T := (α̂′T , λ̂
′
T , η̂

′
T )′ := arg min

α, λ, η

T∑
t=1

(yt − α− λ
′
x+
t − η′xt)2

where we can recover:

β̂
+

T := λ̂T + η̂T and β̂
−
T = η̂T .

Notice that
(
β̂

+′
T , β̂

−′
T

)
is identical to the OLS estimator obtained by regressing yt on

(
1,x+

t ,x
−
t

)
. Now,

%̂T = %∗ +

(
T∑
t=1

qtq
′
t

)−1( T∑
t=1

qtut

)
, (12)
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where qt :=
(
1,x+′

t ,xt
)′. For the analysis of the components in (12), we define:

Σ∗ := lim
T→∞

1

T

T∑
t=1

T∑
s=1

 E[∆xt∆x
′
s] E[∆xtus]

E[ut∆x
′
s] E[utus]

 and

 Bx(·)

Bu(·)

 := Σ
1/2
∗

 Wx(·)

Wu(·)

 ,
where [Wx(·)′,Wu]′ is a (k+1)×1 vector of independent Wiener processes. If {ut} is serially uncorrelated

and independent of {∆xt}, then Σ∗ and

 Bx(·)

Bu(·)

 simplify to

 Σxx 0

0′ σ2
u

 and

 Σ
1/2
xx Wx(·)

σuWu(·)

,

respectively, where Σxx := limT→∞
1
T

∑T
t=1

∑T
s=1 E[∆xt∆x

′
s] and σ2

u := E[u2
t ]. The following lemma

provides the limit behaviors of the components constituting the OLS estimator:

Lemma 3. Given Assumption 1:

(i)

Q̂T := D̃−1
T

(
T∑
t=1

qtq
′
t

)
D̃−1
T ⇒Q :=


1 1

2µ
+′
∗

∫ 1
0 Bx(r)′dr

1
2µ

+
∗

1
3µ

+
∗ µ

+′
∗ µ+

∗
∫ 1

0 rBx(r)′dr∫ 1
0 Bx(r)dr

∫ 1
0 rBx(r)drµ+′

∗
∫ 1

0 Bx(r)Bx(r)′dr

 ,

where D̃T := diag[T 1/2, T 3/2Ik, T Ik];

(ii) if limT→∞ T
−1
∑T

t=1

∑t
i=1 E[∆xiut] is finite, then:

ÛT := D̃−1
T

(
T∑
t=1

qtut

)
⇒ U :=


∫ 1

0 dBu(r)

µ+
∗
∫ 1

0 rdBu(r)∫ 1
0 Bx(r)dBu(r) + Λ∗

 ,

where Λ∗ := limT→∞ T
−1
∑T

t=1

∑t
i=1 E[∆xiut]; and

(iii) in the special case where {ut} is serially uncorrelated and independent of {∆xt}, U simplifies to:

U0 := σu


∫ 1

0 dWu(r)

µ+
∗
∫ 1

0 rdWu(r)

Σ
1/2
xx

∫ 1
0 Wx(r)dWu(r)

 . �
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Note that Q is nonsingular with probability 1, so the limit distribution of %̂T is obtained as a product of

Q−1 and U , as stated in the following corollary:

Corollary 1. Given Assumption 1, D̃T (%̂T − %∗)⇒Q−1U . �

Corollary 1 has important implications for empirical analysis, as summarized in the following remarks:

Remarks.

(a) The convergence rates of λ̂T and η̂T are different; that is, λ̂T − λ∗ = OP(T−3/2) and η̂T − η∗ =

OP(T−1).

(b) Using the definition of λ̂T , we have: T{(β̂
+

T − β̂
−
T )− (β+

∗ −β−∗ )} = OP(T−1/2). This implies that:

T (β̂
+

T − β+
∗ ) = T (β̂

−
T − β−∗ ) + oP(1) (13)

such that the limit distributions of T (β̂
+

T − β+
∗ ) and T (β̂

−
T − β−∗ ) are equivalent. Because the

convergence rate of the long-run parameter estimator is faster than T 1/2, β̂
+

T and β̂
−
T can be treated

as known when estimating the short-run dynamic parameters in the second step. �

The following theorem presents the limit distribution of the OLS estimator of the long-run parameters:

Theorem 2. Given Assumption 1, T [(β̂
+

T −β+
∗ )′, (β̂

−
T −β−∗ )′]′ ⇒ ι2⊗SQ−1U , where S := [0k×(1+k), Ik].

�

3.2.2 First Step Estimation by FM-OLS

Note that the limit distribution in Theorem 2 is non-normal and depends on the nuisance parameters, Σ∗

and Λ∗. Due to the presence of nuisance parameters, the limit distribution cannot be readily exploited for

inference on the long-run parameters. Furthermore, except in the special case where the {ut} is independent

of {∆xt} and/or serially uncorrelated, the OLS estimator of the long-run parameter exhibits an asymptotic

bias determined by Λ∗. The FM-OLS estimator developed by Phillips and Hansen (1990) overcomes these

problems and it is free from asymptotic bias even in the presence of endogenous regressors and/or serial

correlation. It follows an asymptotic mixed normal distribution. We therefore advocate the use of FM-OLS

to estimate the long-run cointegrating parameters in the first step.

12



Suppose that Σ∗ can be consistently estimated by the heteroskedasticity and autocorrelation consistent

covariance matrix estimator of Newey and West (1987) as follows:

Σ̃T :=

 Σ̃
(1,1)

T Σ̃
(1,2)

T

Σ̃
(2,1)

T σ̃
(2,2)
T

 :=
1

T

T∑
t=1

 ∆xt∆x
′
t ∆xtût

ût∆x
′
t û2

t


+

1

T

∑̀
k=1

ω`k

T∑
t=k+1


 ∆xt−k∆x

′
t ∆xt−kût

ût−k∆x
′
t ût−kût

+

 ∆xt∆x
′
t−k ∆xtût−k

ût∆x
′
t−k ûtût−k

 ,

where ω`k := 1− k/(1 + `), ` = O(T 1/4) and ût := yt − α̂T − β̂
+′
T x

+
t − β̂

−′
T x
−
t .

In addition, under mild regularity conditions, it is straightforward to show that the asymptotic bias, Λ∗

in U can be consistently estimated by the following estimator:

Π̃T :=

 Π̃
(1,1)

T Π̃
(1,2)

T

Π̃
(2,1)

T π̃
(2,2)
T

 :=
1

T

∑̀
k=0

T∑
t=k+1

 ∆xt−k∆x
′
t ∆xt−kût

ût−k∆x
′
t ût−kût

 .
Now, define the following long-run parameter estimator:

%̃T := (α̃T , λ̃
′
T , η̃

′
T )′ :=

(
T∑
t=1

qtq
′
t

)−1( T∑
t=1

qtỹt − TS′Λ̃T

)
,

where:

ỹt := yt −∆x′t

(
Σ̃

(1,1)

T

)−1

Σ̃
(1,2)

T and Λ̃T := Π̃
(1,2)

T − Π̃
(1,1)

T

(
Σ̃

(1,1)

T

)−1

Σ̃
(1,2)

T .

Finally, the FM-OLS estimators of the long-run parameters are obtained as follows:

β̃
+

T := λ̃T + η̃T and β̃
−
T := η̃T .

Note that these estimators are designed to remove the asymptotic bias as in Phillips and Hansen (1990). To

derive the limiting distribution of the FM-OLS estimator, we add the following regularity conditions:

Assumption 2. (i) Σ∗ is finite and positive definite and Σ̃T
P→ Σ∗; and

13



(ii) Π∗ is finite and Π̃T
P→ Π∗, where:

Π∗ :=

 Π
(1,1)
∗ Π

(1,2)
∗

Π
(2,1)
∗ π

(2,2)
∗

 := lim
T→∞

1

T

T∑
t=1

t∑
i=1

 E[∆xi∆x
′
t] E[∆xiut]

E[ui∆x
′
t] E[uiut]

 . �

Note that the definition of Π
(1,2)
∗ is identical to Λ∗. The following lemma provides the limit behavior of the

components constituting the FM-OLS estimator:

Lemma 4. Given Assumptions 1 and 2:

D̃−1
T

{(
T∑
t=1

qtut

)
−

(
T∑
t=1

qt∆x
′
t

)(
Σ̃

(1,1)

T

)−1

Σ̃
(1,2)

T − TS′Λ̃T

}
⇒ Ũ := τ∗


∫ 1

0 dWu(r)

µ+
∗
∫ 1

0 rdWu(r)∫ 1
0 Bx(r)dWu(r)

 ,

where τ2
∗ := plimT→∞τ̃

2
T and τ̃2

T := σ̃
(2,2)
T − Σ̃

(2,1)

T (Σ̃
(1,1)

T )−1Σ̃
(1,2)

T . �

Given Lemma 3(i), Q̂T ⇒Q, which is nonsingular with probability 1. The limit distribution of %̃T can

therefore be obtained as the product of Q−1 and Ũ , as stated in the following corollary:

Corollary 2. Given Assumption 1, D̃T (%̃T − %∗)⇒Q−1Ũ . �

Corollary 2 has a number of important implications for empirical work, as outlined in the following Remarks:

Remarks.

(a) The limit distribution of the FM-OLS estimator is mixed normal. Conditional on σ{Bx(r), r ∈

(0, 1]}, the limit distribution of D̃T (%̃T − %∗) is N(0, τ2
∗Q−1). Consequently, if a Wald test statistic

is constructed using the FM-OLS estimator, its null limit distribution will be chi-squared.

(b) As in the case of the 2-step OLS estimator, we have: T (β̃
+

T −β+
∗ ) = T (β̃

−
T −β−∗ ) + oP(1), such that

the limit distribution of β̃
+

T is equivalent to that of β̃
−
T . Furthermore, the limit distribution of β̃

−1

T is

given by that of η̃T .

(c) The convergence rates of β̃
+

T and β̃
−
T are both T . Because their convergence rates exceed T 1/2, we

can estimate the short-run parameters in the second stage regression by replacing ut−1 with ũt−1 :=

yt−1 − α̃T − β̃
+′
T x

+
t−1 − β̃

−′
T x
−
t−1. �
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The following theorem formally presents the limit distribution of the FM-OLS estimator:

Theorem 3. Given Assumptions 1 and 2, T [(β̃
+

T − β+
∗ )′, (β̃

−
T − β−∗ )′]′ ⇒ ι2 ⊗ SQ−1Ũ , where S :=

[0k×(1+k), Ik]. �

4 Hypotheses Testing

The NARDL model differs from the linear ARDL model advanced by Pesaran and Shin (1998) and Pesaran

et al. (2001) in its use of partial sum decompositions to accommodate asymmetries. Consequently, it is

important to test whether any asymmetries in the short-run or the long-run are statistically significant. In

this section, we develop a testing methodology based on Wald’s (1943) testing principle.

4.1 Testing for Symmetry of the Short-Run Parameters

We begin by examining the test for additive symmetry of the short-run dynamic parameters. Consider the

following null and alternative hypotheses:

H0 : Rsζ∗ = r vs. H1 : Rsζ∗ 6= r,

where Rs ∈ Rr×1+p+2k, and r ∈ Rr (r ∈ N) are selection matrices. If we define Rs :=
[
0′1+p, ιk,−ιk

]
and r = 0′, then we can test the null hypothesis of additive short-run symmetry against the alternative

hypothesis of additive short-run asymmetry:2

H0 :

q−1∑
j=0

π+
j∗ =

q−1∑
j=0

π−j∗ vs. H1 :

q−1∑
j=0

π+
j∗ 6=

q−1∑
j=0

π−j∗.

We construct a Wald test statistic to test the above hypotheses as follows:

W(s)
T := T (Rsζ̂T − r)′(RsΓ̂

−1

T Ω̂T Γ̂
−1

T R′s)
−1(Rsζ̂T − r),

2Studies in the existing NARDL literature test several different forms of short-run symmetry restrictions, including the additive
form that we consider here, as well as pairwise symmetry between π+

j∗ and π−j∗ for j = 0, . . . , q − 1 (e.g. SYG) and impact
symmetry between π+

0∗ and π−0∗ (e.g. Greenwood-Nimmo and Shin, 2013). It is straightforward to test these alternative short-run
symmetry restrictions by specifying appropriate selection matrices, Rs and r.
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where Ω̂T is a consistent estimator for Ω∗: Ω̂T := T−1
∑T

t=1 ê
2
thth

′
t. We let êt := ∆yt − ζ̂

′
Tht, where

ζ̂T can be constructed from the first step regression using FM-OLS, as described above. Furthermore, if the

condition in Lemma 2(iii) holds, then the Wald test statistic simplifies to:

W(s)
T := T (Rsζ̂T − r)′(σ̂2

e,TRsΓ̂
−1

T R′s)
−1(Rsζ̂T − r),

where σ̂2
e,T := T−1

∑T
t=1 ê

2
t . In Theorem 4, we establish that the null and alternative limit distributions of

the Wald test statistic are standard.

Theorem 4. Given Assumption 1, if Γ∗ and Ω∗ are positive definite, then:

(i) W(s)
T

A∼ X 2
r under H0; and

(ii) for any sequence, cT , such that cT = o(T ), P(W(s)
T > cT )→ 1 under H1. �

We omit the proof of Theorem 4 as it is straightforward.

4.2 Testing for Symmetry of the Long-Run Parameters

Consider the following hypotheses for the long-run parameters:

H ′0 : R`(β
+
∗ − β−∗ ) = r vs. H ′1 : R`(β

+
∗ − β−∗ ) 6= r,

for some R` ∈ Rr×k, r ∈ Rr (r ∈ N). By setting R` = Ik and r = 0k, we can test whether β+
∗ = β−∗ . In

models with multiple independent variables, we can also test the partial equality of β+
∗ an β−∗ by selecting

Rl and r appropriately.

Recall that λ∗ := β+
∗ − β−∗ in (11). Consequently, we can restate H ′0 as follows:

H ′′0 : R`λ∗ = r vs. H ′′1 : R`λ∗ 6= r.

Consequently, the long-run symmetry restriction, β+
∗ = β−∗ , is equivalent to the restriction that λ∗ = 0. It

is straightforward to test this restriction if λ∗ is estimated by FM-OLS, because the FM-OLS estimators of

the long-run parameters are asymptotically mixed-normally distributed, so the Wald test statistic will follow

an asymptotic chi-squared distribution. This is an important advantage of FM-OLS over OLS, which yields

a non-standard limit distribution for the long-run parameter.
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Corollary 2 provides the limit distribution of λ̃T . If we let S` := [0k×1, Ik,0k×k], then T 3/2(λ̃T−λ∗) =

S`D̃T (%̃T −%∗)⇒ S`Q−1Ũ , implying that T 3/2R`(λ̃T −λ∗)⇒ R`S`Q−1Ũ , so that T 3/2(R`λ̂T −r)⇒

R`S`Q−1Ũ under H ′′0 . The Wald test statistic is constructed in the usual manner:

W(`)
T := T 3(R`λ̃T − r)′

(
τ̃2
TR`S`Q̂

−1
T S′`R

′
`

)−1
(R`λ̃T − r).

Note that the Wald statistic above may be inappropriate to test other forms of hypothesis. For example,

consider the following hypotheses:

H ′′′0 : Rβ∗ = r vs. H ′′′1 : Rβ∗ 6= r,

for some R ∈ Rr×2k and r ∈ Rr, where β∗ := (β+′
∗ ,β

−′
∗ )′. Define:

R̃` :=

 0k×1 Ik Ik

0k×1 0k×k Ik

 ,
such that these hypotheses can be rewritten as follows:

H ′′′0 : R̃%∗ = r vs. H ′′′1 : R̃%∗ 6= r,

where we note that R̃%∗ = β∗ and R̃ := RR̃`. In this case, we define the following Wald test statistic:

W̃(`)
T := (R̃%̃T − r)′(τ̂2

T R̃Q−1
T R̃′)−1(R̃%̃T − r),

where QT :=
∑T

t=1 qtq
′
t. The following theorem describes the limit behavior of the Wald test statistics:

Theorem 5. Given Assumptions 1 and 2:

(i) W(`)
T

A∼ X 2
r under H ′′0 and W̃(`)

T
A∼ X 2

2k under H ′′′0 ; and

(ii) for any sequence, cT and c̃T , such that cT = o(T 3) and c̃T = o(T 2), P(W(`)
T > cT ) → 1 under H ′′1

and P(W̃(`)
T > c̃T )→ 1 under H ′′′1 . �

The null limit distribution ofW(`)
T can also be generated by simulation as in SYG.
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5 Monte Carlo Simulations

In this section, we examine the estimation and inferential properties of the estimators and test statistics

defined in Sections 3 and 4 by simulation. First, we study the finite sample bias and mean squared error

(MSE) of the parameters estimated in two steps, where the first step estimator is either OLS or FM-OLS and

the second step estimator is OLS. We then examine the properties of the Wald test statistics.

5.1 Finite Sample Performance of the Two-step Estimators

We generate simulated data using the following NARDL(1,0) data generating process (DGP):

∆yt = γ∗ + ρ∗ut−1 + ϕ∗∆yt−1 + π+
∗ ∆x+

t + π−∗ ∆x−t + et, (14)

where:

ut−1 := yt−1−α∗−β+
∗ x

+
t−1−β

−
∗ x
−
t−1, ∆xt := κ∗∆xt−1+

√
1− κ2

∗vt, and (et, vt)
′ ∼ IIDN(02, I2).

We set (α∗, β
+
∗ , β

−
∗ , γ∗, ρ∗, ϕ∗, π

+
∗ , π

−
∗ , κ∗) = (0, 2, 1, 0,−2/3, ϕ∗, 1, 1/2, 1/2). We allow the sample size,

T , to vary over 100, 250, 500, 750 and 1,000, and ϕ∗ to vary over −0.50, −0.25, 0.00, 0.25 and 0.5 to

introduce different degrees of serial correlation. Note that ∆xt is generated by an AR(1) process with

normally distributed disturbances and that ut is both serially correlated and contemporaneously correlated

with ∆xt.

Next, we specify the following long-run and short-run models:

yt = α+ λx+
t + ηxt + ut,

∆yt = γ + ρût−1 + ϕ1∆yt−1 + π+
0 ∆x+

t + π−0 ∆x−t + et,

where ût := yt − α̂T − λ̂Tx+
t − η̂Txt. We estimate these models in two steps. In the first step, we estimate

the parameters of the long-run relationship using either OLS or FM-OLS. In the second step, we estimate

the short-run parameters by OLS. In each case, we evaluate the performance of the estimators by comparing

their finite sample bias and MSE. Recall that the convergence rates of the long-run and short-run parameter

estimators are T and
√
T , respectively. It is necessary to adjust for these different convergence rates in order
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to facilitate reliable comparisons of the finite sample bias and MSE of the long-run and short-run parameter

estimators across different sample sizes. We therefore compute the asymptotic bias of β̂+
T and ϕ̂T as follows:

BiasT (β+
∗ ) := R−1

R∑
j=1

T (β̂+
T,j − β

+
∗ ) and BiasT (ϕ∗) := R−1

R∑
j=1

√
T (ϕ̂T,j − ϕ∗),

where R is the number of replications used in the simulation experiment, β̂+
T is obtained in the first step by

OLS or FM-OLS and ϕ̂T is obtained in the second-step by OLS. Likewise, we take account of the different

convergence rates when calculating the finite sample MSE of β̂+
T and ϕ̂T as follows:

MSET (β+
∗ ) := R−1

R∑
j=1

T 2(β̂+
T,j − β

+
∗ )2 and MSET (ϕ∗) := R−1

R∑
j=1

T (ϕ̂T,j − ϕ∗)2.

The finite sample bias and MSE of the estimated parameters based on R = 5, 000 replications of the

simulation experiments are recorded in Tables 1 and 2, respectively. To conserve space, we do not report the

finite sample bias and MSE for both intercepts, α and γ; these results are available on request.

— Insert Tables 1 and 2 Here —

First, consider the long-run parameter estimators obtained in the first step. The finite sample bias of the

FM-OLS estimator is substantially smaller than that of the first step OLS estimator. Recall that FM-OLS

yields normally distributed estimators for the long-run parameters, β+
∗ and β−∗ . Consequently, in most

cases, we find that the finite sample bias of the FM-OLS estimator is close to zero, because T (β̂+
T −β+

∗ ) and

T (β̂−T − β−∗ ) are asymptotically mixed-normally distributed around zero. By contrast, the OLS estimator

is not asymptotically distributed around zero and exhibits non-negligible bias. In addition, our simulation

results indicate that the FM-OLS estimator is often more efficient than its OLS counterpart, resulting in a

smaller MSE as the sample size increases. This tendency is particularly apparent for small and/or negative

values of ϕ∗. Taken as a whole, these results strongly favor the use of FM-OLS in the first step.

Now, consider the short-run parameter estimators obtained by OLS in the second step. We find that

the finite sample biases of the second step OLS estimators of the dynamic parameters become negligible as

the sample size increases. This is true irrespective of the choice to use either OLS or FM-OLS in the first

step, although the smaller biases are obtained in almost all cases when the first step estimator is FM-OLS.

The MSEs of the second step OLS estimators are similar irrespective of the choice of OLS or FM-OLS in
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the first step. Even for a small sample of just 100 observations, the bias is minor in all cases. This is an

encouraging observation, because many existing applications of the NARDL model rely on small datasets,

constrained by the low sampling frequency and limited history of many macroeconomic databases.

5.2 Finite Sample Performance of the Wald Statistics

This section examines the finite sample performance of the Wald test statistics derived in Section 4.

5.2.1 Testing Restrictions on the Short-Run Parameters

To examine the empirical level properties of the Wald test statistic, we generate data using (14), with

(α∗, β
+
∗ , β

−
∗ , γ∗, ρ∗, ϕ∗, π

+
∗ , π

−
∗ , κ∗) = (0, 2, 1, 0,−2/3, ϕ∗, 1/2, 1/2, 1/2) and allowing ϕ∗ to vary over

−0.50,−0.25, 0.00, 0.25 and 0.50, as in Section 5.1. We first estimate the long-run parameters by FM-OLS

and compute ût before we estimate the short-run parameters by OLS. We then test the following hypotheses:

H
(s)
0 : π+

∗ − π−∗ = 0 versus H
(s)
1 : π+

∗ − π−∗ 6= 0,

usingW(s)
T with the heteroskedasticity consistent covariance estimator Ω̂T . The computed value of the Wald

test statistic is then compared against the critical values of the chi-squared distribution with one degree of

freedom at the 1%, 5%, and 10% levels of significance.

The simulation results reported in Table 3 reveal that the finite sample distribution of the Wald test

statistic is well-approximated by the chi-squared distribution. For each level of significance, the empirical

level of the test statistic is approximately correct, particularly once the number of observations reaches 500.

Interestingly, the empirical levels display little sensitivity to the value of ϕ∗ even for moderate T .

— Insert Table 3 Here —

Next, we examine the empirical power properties of the Wald test statistic. For this exercise, we maintain

the same hypotheses but we update the parameters of the DGP, setting (α∗, β
+
∗ , β

−
∗ , γ∗, ρ∗, ϕ∗, π

+
∗ , π

−
∗ , κ∗) =

(0, 2, 1, 0,−2/3, ϕ∗, 1, 1/2, 1/2). As before, we allow ϕ∗ to vary over −0.50, −0.25, 0.00, 0.25 and 0.50

and we computeW(s)
T using the heteroskedasticity consistent covariance matrix estimator. The simulation

results are reported in Table 4. Two points are noteworthy. First, the empirical power of the Wald test

statistic increases with T , indicating that the test statistic is consistent. Second, the power of the Wald test

statistic exhibits little sensitity to the degree of autocorrelation, captured by the value of the parameter ϕ∗.
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— Insert Table 4 Here —

5.2.2 Testing Restrictions on the Long-Run Parameters

Here, we confine our attention to the case where the FM-OLS estimator is used in the first step. We generate

data using (14) and set (α∗, β
+
∗ , β

−
∗ , γ∗, ρ∗, ϕ∗, π

+
∗ , π

−
∗ , κ∗) = (0, 1, 1, 0,−2/3, ϕ∗, 1/3, 1/2, 1/2), as in

Section 5.1. We test the following hypotheses:

H
(`)
0 : β+

∗ − β−∗ = 0 versus H
(`)
1 : β+

∗ − β−∗ 6= 0.

The simulation results reported in Table 5 reveal some mis-sizing in small samples, particularly for negative

values of ϕ∗. Nonetheless, as the sample size increases, the distribution of the Wald test statistic becomes

increasingly well-approximated by the chi-squared distribution with one degree of freedom. However, in

practical applications where the sample size is smaller than 500, the use of resampling techniques to obtain

an empirical p-value may be advisable.

— Insert Table 5 Here —

To examine the empirical power properties of the Wald test statistic, we generate data from (14) with

(α∗, β
+
∗ , β

−
∗ , γ∗, ρ∗, ϕ∗, π

+
∗ , π

−
∗ , κ∗) = (0, 1.01, 1, 0,−2/3, ϕ∗, 1/3, 1/2, 1/2) and we allow ϕ∗ to vary over

−0.50, −0.25, 0.00, 0.25 and 0.50, as before. The simulation results forW(`)
T are reported in Table 6. We

find that the Wald test statistic is consistent under the alternative hypothesis. Irrespective of the value of ϕ∗,

the empirical rejection rates of the Wald test statistic converge to 100%. Furthermore, the power patterns of

the Wald test statistic are largely insensitive to the value of ϕ∗.

— Insert Table 6 Here —

6 Empirical Application: Post-war Dividend Smoothing in the US

To illustrate the use of our two-step estimation procedure, we analyze the relationship between real dividends

and real earnings in the US. Among firms that pay dividends, the common practice is to adjust the dividend

gradually in response to earnings news. The seminal study of dividend smoothing behavior was conducted

by Lintner (1956), based on interviews with managers from twenty-eight companies. A key finding from
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these interviews is that managers are reluctant to announce dividend changes that they may subsequently

be obliged to reverse. Consequently, Lintner contends that firms only adjust their dividends in response

to non-transitory earnings changes, with the goal of achieving a desired long-run target payout ratio. A

substantial body of empirical work supports this view (e.g. Fama and Babiak, 1968; Marsh and Merton,

1987; Garrett and Priestley, 2000; Andres, Betzer, Goergen, and Renneboog, 2009).

A more recent study by Brav et al. (2005) focusing on the factors that determine dividend and share

repurchase decisions largely corroborates Lintner’s findings. Specifically, Brav et al. find that 93.8% of

managers agree that executives strive to avoid reducing dividends, while 89.6% agree that executives smooth

the dividend stream. 77.9% agree that executives are reluctant to announce dividend changes that will

subsequently be reversed, because 88.1% of managers perceive that there are negative consequences to

cutting dividends. Indeed, such is the reluctance to cut dividends that Brav et al. (2005) find that managers

would first consider liquidating assets, reducing the workforce or even deferring profitable investments.

The importance that managers attach to dividends supports DeAngelo and DeAngelo’s (2006) view that

dividends matter to investors, contrary to the classic irrelevance theorem of Miller and Modigliani (1961).

To capture the gradualism with which firms approach their target dividend, Lintner (1956) proposes the

following partial adjustment model:

∆Dt = a∗ − ζ∗ (D∗t −Dt−1) + εt, (15)

where Dt and D∗t denote the current level and the target level of dividends at time t, respectively, and where

|ζ∗| measures the speed with which the dividend is adjusted toward the target. As noted by Cho, Kim, and

Shin (2015), it is widely believed that an equilibrium relation exists between the dividend target and current

earnings, Et. Writing this equilibrium relation as D∗t = β∗Et, where β∗ captures the target payout ratio, we

re-write Lintner’s partial adjustment model in the following form:

∆Dt = a∗ + ζ∗Dt−1 + θ∗Et + εt, (16)

where θ∗ = −ζ∗β∗. As a linear partial adjustment process, (16) implies that the dividend is adjusted

symmetrically with respect to both positive and negative earnings news. This is incompatible with the

behavior documented in the surveys of Lintner (1956) and Brav et al. (2005). In particular, it is difficult

to reconcile with the survey respondents’ insistence that managers tend to smooth the dividend stream and
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avoid cutting dividends where possible. To allow for differential adjustment with respect to positive and

negative earnings news, we first define the following partial sum decomposition of real earnings:

Et = E0 + E+
t + E−t , (17)

where the initial value, E0, can be set to zero without loss of generality, E+
t =

∑t
j=1

(
∆Ej1{∆Ej≥0}

)
,

E−t =
∑t

j=1

(
∆Ej1{∆Ej<0}

)
and 1{·} is a Heaviside function taking the value 1 if the condition in braces

is satisfied and zero otherwise. Now, we propose the following asymmetric generalization of the equilibrium

relation between the target dividend and real earnings: D∗t = β+
∗ E

+
t + β−∗ E

−
t , where β+

∗ and β−∗ capture

the target payout ratios with respect to positive earnings news and negative earnings news, respectively. We

now re-write (16) as follows:

∆Dt = a∗ + ζ∗Dt−1 + θ+
∗ E

+
t + θ−∗ E

−
t + εt, (18)

where θ+
∗ = −ζ∗β+

∗ and θ−∗ = −ζ∗β−∗ . Unit root testing reveals that Dt and Et are all first difference

stationary time series, implying that there is an asymmetric cointegrating relation between these variables

provided that their linear combination is stationary.3 To account for serial correlation in εt, (18) may be

embedded within a NARDL(p,q) model as follows:

∆Dt = α∗ + ζ∗(Dt−1 − β+
∗ E

+
t−1 − β

−
∗ E
−
t−1)

+

p−1∑
j=1

λj∗∆Dt−j +

q−1∑
j=0

d+
j∗∆E

+
t−j +

q−1∑
j=0

d−j∗∆E
−
t−j + εt, (19)

where the use of a sufficiently rich lag structure will ensure that εt is serially uncorrelated. Equation (19)

can be estimated either by the single-step procedure advanced by SYG or by the two-step procedure that we

propose above. We will take the opportunity to compare both estimation procedures.

Using data from the Irrational Exuberance dataset maintained by Robert Shiller, we construct a quarterly

dataset of real earnings and real dividends for the S&P 500 index over the period 1946Q1–2006Q4.4 Our

sample period starts after World War II because there is evidence of a substantial change in payout policy at

approximately this time. For example, Chen, Da, and Priestley (2012) find that dividends adjust to earnings

3Unit root testing results are available from the authors on request.
4Shiller’s dataset is available from http://www.econ.yale.edu/˜shiller/data/ie_data.xls.
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news four times slower in the post-war period (1946–2006 in their analysis) compared to a pre-war sample

period (1871–1945). We choose to end our sample in 2006Q4, immediately prior to the period of extreme

earnings volatility associated with the global financial crisis.

In Table 7, we report descriptive statistics for both the level and first difference of real earnings and real

dividends. The descriptive statistics demonstrate that real earnings are considerably more volatile than real

dividends, with greater tail mass. The standard deviation of real earnings is almost four times larger than

that of real dividends. Furthermore, unlike the real dividends data, which is approximately symmetrically

distributed with little excess kurtosis, real earnings displays a notable right skew and notable excess kurtosis.

Similar patterns are also evident in the first-differenced data, although neither series displays a notable skew

in this case. These observations are collectively consistent with the notion that executives smooth the time

path of dividends relative to earnings news. This tendency can be easily discerned by eye in Figure 1, which

presents time series plots of the level of real earnings and real dividends.

— Insert Table 7 and Figure 1 Here —

In light of the quarterly sampling frequency of our data, we estimate a NARDL(4,4) model using both

the single-step estimation routine devised by SYG and the two-step procedure that we develop above, using

FM-OLS in the first step. In Table 8, we report the long-run parameter estimates obtained in each case.

To facilitate comparisons between the two estimation strategies, we transform the estimated parameters to

obtain estimated values of β+ and β−, the corresponding standard errors of which are computed via the Delta

method. The point estimates obtained from the two different estimation frameworks are remarkably similar

in both cases, although the two-step estimation procedure yields more precise estimates, with standard errors

approximately half as large as those obtained from the single-step procedure. We conjecture that the relative

imprecision of the long-run parameters obtained from the single-step estimator may arise due the way in

which the long-run parameters are constructed as ratios. For example, the standard error of the long-run

parameter estimator may be inflated if the numerator and demoninator share a negative covariance. In

addition, the precision of the single-step estimates of the long-run parameters may deteriorate for values of

the error correction coefficient close to zero. No such issue arises in the case of two-step estimation.

The difference in precision of the long-run parameter estimates has an important practical implication

in this case. Based on the results of the single-step procedure, we are unable to reject the null hypothesis

of long-run symmetry: the Wald test of H0 : β+ = β− versus H1 : β+ 6= β− returns a p-value of
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0.412. By contrast, the increased precision of the two-step estimation procedure allows us to reject the null

hypothesis of long-run symmetry at the 5% level (the Wald test of H0 : λ = 0 versus H1 : λ 6= 0 returns

a p-value of 0.0126). A comparison of the magnitude of the long-run parameters associated with positive

and negative earnings reveals that dividends respond slightly more strongly to earnings increases than to

earnings decreases in long-run equilibrium. This phenomenon offers a simple explanation for the growing

gap between real earnings and real dividends in Figure 1 and is consistent with the evidence that executives

are loathe to cut dividends for fear of sending adverse signals regarding corporate performance.

— Insert Table 8 Here —

Following SYG, support for the existence of an asymmetric cointegrating relationship between real

dividends and real earnings can be obtained using either the ECM-based tBDM -test of Banerjee, Dolado,

and Mestre (1998) or FPSS-test proposed by Pesaran et al. (2001) in the case of single-step estimation.

However, the lagged levels terms Dt−1, E+
t−1 and E−t−1 are not included in the second-step of our two-step

estimation framework, so only the tBDM -test is applicable in this case. Based on the single-step estimation

results, we obtain a tBDM -test statistic of -2.935; in the two-step case, we obtain a value of -3.086. Both

exceed the relevant 10% critical value of -2.91 tabulated by Pesaran et al. (2001), indicating a rejection of

the null hypothesis of no asymmetric cointegration at the 10% level.5

Given the similarity of the point estimates of the long-run parameters obtained from the single-step

and two-step estimation frameworks, we expect that the long-run disequilibrium errors obtained from each

method should track one-another closely. Figure 2 reveals that this is the case, with both displaying almost

identical dynamics over our sample period.

— Insert Figure 2 Here —

The similarity of the long-run disequilibrium errors, in turn, suggests that the speed of error correction

implied by each model should also be very similar. Table 9 reveals this to be the case. The single-step

parameter estimates imply that disequilibrium errors are corrected at a rate of 3.1% per quarter, while the

corresponding value based on the two-step approach is 3.2%. Likewise, given the similarities documented

to this point, we expect the dynamic parameter estimates to be very similar across both estimation methods.

In practice, the degree of similarity revealed by Table 9 is striking.

5This critical value is obtained from Table CII(iii) in Pesaran et al. (2001). Following the conservative rule-of-thumb advocated
by SYG, we select the critical value for a model with a single explanatory variable (i.e. we count the number of explanatory variables
prior to their decomposition into positive and negative cumulative partial sums).
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— Insert Table 9 Here —

In practice, neither the single-step nor the two-step estimation results provide any support for the

hypothesis of short-run asymmetry at any horizon. For example, the Wald test of the null hypothesis of

impact symmetry, H0 : δ+
0∗ = δ−0∗, versus the two-sided alternativeH1 : δ+

0∗ 6= δ−0∗ returns a p-value of 0.127

in the single-step case and 0.145 in the two-step case. Likewise, the null hypothesis of additive short-run

symmetry, H0 :
∑q−1

j=0 δ
+
j∗ =

∑q−1
j=0 δ

−
j∗, is not rejected against the alternative, H1 :

∑q−1
j=0 δ

+
j∗ 6=

∑q−1
j=0 δ

−
j∗,

in both cases, with p-values of 0.251 (single-step) and 0.236 (two-step).

Overall, our empirical results suggest that executives pass earnings increases through to dividends

slightly more strongly than earnings decreases in long-run equilibrium. The magnitude of this asymmetry is

relatively small but nonetheless it is economically significant and it is consistent with existing evidence of

asymmetric aggregate payout policy (e.g. Brav et al., 2005). Both the single-step and two-step estimation

procedures yield qualitatively and quantitatively similar results, indicating that both procedures may be

used in practice, particularly in large samples, where their asymptotic equivalence should become apparent.

However, when working with small samples, the two-step approach may yield greater precision in the

estimation of the long-run parameters and this may improve one’s ability to detect long-run asymmetry.

7 Concluding Remarks

In this paper, we revisit the NARDL model developed by SYG. In the existing literature, the NARDL model

is typically estimated in a single step by OLS. Support for the efficacy of the single-step OLS estimator based

on Monte Carlo simulations has been provided by SYG. However, efforts to develop asymptotic theory for

the single-step estimator has been impeded by the presence of an asymptotic singularity problem caused by

the presence of asymptotically perfectly collinear time trends in the positive and negative cumulative partial

sum processes that are used to introduce asymmetry in the NARDL model.

We develop a two-step estimation procedure that makes use of a one-to-one transformation of the

asymmetric long-run relationship in the NARDL model to overcome this asymptotic singularity issue. In

the first step, the parameters of the transformed asymmetric long-run relationship are estimated using any

consistent estimator with a convergence rate faster than the square root of the sample size, T 1/2. In practice,

we advocate the use of the FM-OLS estimator of Phillips and Hansen (1990) in the first step, because

it accounts for serial correlation and potential endogeneity of the explanatory variables and it facilitates
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standard inference by virtue of its asymptotic mixed normality. In the second step, the dynamic coefficients

can be estimated consistently by OLS treating the error correction term obtained from the first step as given,

in light of the super-consistency of the first step estimator. Unlike the single-step estimation procedure, our

two-step procedure is analytically tractable. Consequently, we are able to derive the asymptotic properties

of the estimators and to characterize their limit distributions. We also develop Wald tests that can be used

to evaluate restrictions on the short- and long-run parameters. In both cases, we demonstrate that the null

distribution of the Wald statistic weakly converges to a chi-squared distribution. A suite of Monte Carlo

simulations indicate that our asymptotic results continue to hold to an acceptable degree in finite samples.

We illustrate our methodology with an application to dividend-smoothing in the postwar period in the

US. Our results are consistent with a large body of research that finds that managers smooth the time path

of dividends relative to earnings. We document evidence of asymmetry in long-run equilibrium, where we

find that managers allow real dividends to respond slightly more strongly to positive earnings news than to

negative earnings news. By contrast, we find no evidence of asymmetry in the short-run dynamic parameters.
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A Appendix

A.1 Proofs

Proof of Lemma 1. (i) We note that:
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By (4) and (5), we obtain the following:
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By (4) and (5), we note that:
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Given this, we note that:
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Proof of Lemma 2.
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This result is easily obtained using the ergodic theorem and the multivariate central limit theorem. �

Proof of Theorem 1.

(i) Given (9), we can combine Lemmas 2 (i and ii) to obtain the desired result.

(ii) If it further holds that E[e2
t |ht] = σ2

∗ , Lemma 2(iii) implies that Ω∗ = σ2
∗Γ∗. Therefore, Theorem 1(i)

now implies that
√
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Proof of Lemma 3.
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t=1 x

+′
t T−3/2

∑T
t=1 x

′
t

T−2
∑T

t=1 x
+
t T−3

∑T
t=1 x

+
t x

+′
t T−5/2

∑T
t=1 x

+
t x
′
t

T−3/2
∑T

t=1 xt T−5/2
∑T

t=1 xtx
+′
t T−2

∑T
t=1 xtx

′
t

 .

In addition, we note that:

• T−2
∑T

t=1 x
+
t = T−1

∑T
t=1µ

+
∗ (t/T ) + oP(1)

P→ 1
2µ

+
∗ ;

• T−3/2
∑T

t=1 xt = T−1
∑T

t=1(T−1/2
∑t

i=1 ∆xi) ⇒
∫ 1

0 Bx(r)dr using that T−1/2
∑[T (·)]

i=1 ∆xi ⇒∫ (·)
0 dBx(r);

• T−3
∑T

t=1 x
+
t x

+′
t = T−1

∑T
t=1µ

+
∗ µ

+′
∗ (t/T )2 + oP(1)

P→ 1
3µ

+
∗ µ

+′
∗ ;

• T−5/2
∑T

t=1 x
+
t x
′
t = T−1

∑T
t=1µ

+
∗ (t/T )(T−1/2

∑t
i=1 ∆x′t) + oP(1)⇒ µ+

∗
∫ 1

0 rBx(r)′dr; and

• T−2
∑T

t=1 xtx
′
t = T−1

∑T
t=1(T−1/2

∑t
i=1 ∆xt)(T

−1/2
∑t

i=1 ∆x′t)⇒
∫ 1

0 Bx(r)Bx(r)′dr.

Therefore, we obtain the following:

Q̂T ⇒


1 1

2µ
+′
∗

∫ 1
0 Bx(r)′dr

1
2µ

+
∗

1
3µ

+
∗ µ

+′
∗ µ+

∗
∫ 1

0 rBx(r)′dr∫ 1
0 Bx(r)dr

∫ 1
0 rBx(r)drµ+′

∗
∫ 1

0 Bx(r)Bx(r)′dr

 ,

as desired.
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(ii) We note that:

ÛT =


T−1/2

∑T
t=1 ut

T−3/2
∑T

t=1 x
+
t ut

T−1
∑T

t=1 xtut

 .
In addition, we note that:

• T−1/2
∑T

t=1 ut ⇒
∫ 1

0 dBu(r) using that T−1/2
∑[T (·)]

t=1 ut ⇒
∫ (·)

0 dBu(r);

• T−3/2
∑T

t=1 x
+
t ut = T−1/2

∑T
t=1µ

+
∗ (t/T )ut + oP(1)⇒ µ+

∗
∫ 1

0 rdBu(r); and

• T−1
∑T

t=1 xtut = T−1/2
∑T

t=1(T−1/2
∑t

i=1 ∆xi)ut ⇒
∫ 1

0 Bx(r)dBu(r) + Λ∗ using the fact that

Λ∗ := limT→∞ T−1
∑T

t=1

∑t
i=1 E[∆xiut] is finite.

Therefore,

ÛT ⇒


∫ 1

0 dBu(r)

µ+
∗
∫ 1

0 rdBu(r)∫ 1
0 Bx(r)dBu(r) + Λ∗

 .

(iii) Given the conditions, Bu(·) = σuWu(·) and Bx(·) = Σ
1/2
xx Wx(·). Furthermore, it follows from the

given condition that E[∆xtus] = 0. The desired result follows in light of these additional properties. This

completes the proof. �

Proof of Corollary 1.

Given (12), the desired result follows from Lemma 2. �

Proof of Theorem 2.

By (13), the weak limit of T (β̂
+

T − β+
∗ ) is equivalent to that of T (β̂

−
T − β−∗ ). Furthermore, Corollary 1

implies that T (β̂
−
T − β−∗ )⇒ SQ−1U , leading to the desired result. �

Proof of Lemma 4.

Given Assumption 2, we note that Λ̃T
P→ Λ∗ and (Σ̃

(1,1)

T )−1Σ̃
(1,2)

T
P→ ν∗ := (Σ̃

(1,1)

∗ )−1Σ̃
(1,2)

∗ , where:

Σ∗ :=

 Σ
(1,1)
∗ Σ

(1,2)
∗

Σ
(2,1)
∗ σ

(2,2)
∗

 := lim
T→∞

1

T

T∑
t=1

T∑
s=1

 E[∆xt∆x
′
s] E[∆xtus]

E[ut∆x
′
s] E[utus]

 .
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Therefore, if we let üt := ut −∆x′tν∗:

D̃−1
T

{(
T∑
t=1

qtut

)
−

(
T∑
t=1

qt∆x
′
t

)
(Σ̃

(1,1)

T )−1Σ̃
(1,2)

T − S′Λ̃T

}

= D̃−1
T

{(
T∑
t=1

qtut

)
−

(
T∑
t=1

qt∆x
′
t

)
ν∗ − S′Λ∗

}
+ oP(1) = D̃−1

T

T∑
t=1

{(
qtüt − S′Λ∗

)}
+ oP(1),

implying that:

D̃−1
T

T∑
t=1

{(
qtüt − S′Λ∗

)}
⇒


∫ 1

0 dBü(r)

µ+
∗
∫ 1

0 rdBü(r)∫ 1
0 Bx(r)dBü(r)

 ,
where Bü(·) := τ∗Wu(·). Therefore:

D̃−1
T

{(
T∑
t=1

qtut

)
−

(
T∑
t=1

qt∆x
′
t

)
(Σ̃

(1,1)

T )−1Σ̃
(1,2)

T − S′Λ̃T

}
⇒ Ũ .

This completes the proof. �

Proof of Corollary 2.

Given that:

D̃T (%̃T − %∗)

=

[
D̃−1
T

(
T∑
t=1

qtqt

)
D̃−1
T

]−1

D̃−1
T

[(
T∑
t=1

qtut

)
−

(
T∑
t=1

qt∆x
′
t

)(
Σ̃

(1,1)

T

)−1

Σ̃
(1,2)

T − TS′Λ̃T

]
,

the desired result follows from Lemmas 3(i) and 4. �

Proof of Theorem 3.

Given that (β̃
+

T −β+
∗ )− (β̃

−
T −β−∗ ) = λ̃T −λ∗ = OP(T−3/2) and (β̃

−
T −β−∗ ) = OP(T−1), it follows that

(β̃
+

T −β+
∗ ) = OP(T−1), implying that the weak limit of T (β̃

+

T −β+
∗ ) is equivalent to that of T (β̃

−
T −β−∗ ).

Furthermore, Corollary 1 implies that T (η̃−T − η−∗ ) = T (β̃
−
T − β−∗ ) ⇒ SQ−1Ũ , leading to the desired

result. �

Proof of Lemma 5.

We omit the proof due to its similarity to the proof of Lemma 1. �
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Proof of Theorem 4.

Due to its similarity to the standard case, we omit the proof. �

Proof of Theorem 5.

(i) Corollary 2 implies that T 3/2(R`λ̃T − r) ⇒ R`SQ−1Ũ under H ′′0 , while Lemma 3(i) implies that

Q̂(κ)T := D̃−1
T

(∑T
t=1 qtq

′
t

)
D̃−1
T ⇒ Q(κ). Furthermore, Assumption 2(i) implies that τ̂2

T = τ2
∗ + oP(1).

Given the mixed normal distribution of the FM-OLS estimator for the long-run parameter in Corollary 2, it

follows thatW(`)
T

A∼ X 2
r underH′′0 .

In addition, we note that W̃(`)
T = (R̃%̃T −r)′D̃T (τ̂2

T R̃Q̂−1
T R̃′)−1D̃T (R̃%̃T −r). Furthermore, Theorem

3 implies that D̃T (R̃%̃T − r)
A∼ N(0, τ2

∗ R̃Q−1R̃′) conditional on σ{Bx(r) : r ∈ (0, 1]} under H ′′′0 . Given

the condition that Q̂T ⇒Q and τ̂2
T

P→ τ2
∗ , it now follows that W̃(`)

T
A∼ X 2

2k under H ′′′0 .

(ii) Given that (λ̃T − λ∗) = OP(T−3/2), W(`)
T = OP(T 3) under H ′′1 . Therefore, for any cT = o(T 3),

P(W(`)
T > cT ) → 1. Furthermore, (β̃T − β∗) = OP(T−1), implying that W̃(`)

T = OP(T 2) under H ′′′1 .

Therefore, for any c̃T = o(T 2), P(W̃(`)
T > c̃T )→ 1. This completes the proof. �

A.2 A Further Singularity Problem under Single-Step Estimation

It is important to realize that the re-parameterization of the long-run relationship that we propose to resolve

the singularity issue under 2-step estimation in (11) is insufficient to resolve the singularity issue involved

in single-step NARDL estimation. In fact, efforts to estimate the short-run and the long-run parameters in a

single step by combining (7) with (3) will encounter a further singularity problem. Using the definitions of

λ∗ := β+
∗ − β−∗ and η∗ := β−∗ , it follows that ut−1 = yt−1 − λ′∗x+

t−1 − β
′
∗xt−1, such that:

∆yt = ρ∗yt−1 + (θ+
∗ −θ−∗ )′x+

t−1 +θ−′∗ xt−1 + γ∗+

p−1∑
j=1

ϕj∗∆yt−j +

q−1∑
j=0

(
π+′
j∗∆x

+
t−j + π−′j∗∆x

−
t−j

)
+ et,

(20)

where β+
∗ := −θ+

∗ /ρ∗ and β−∗ := −θ−∗ /ρ∗. Let:

ξ∗ :=
[
ξ′1∗ ξ′2∗

]′
:=
[
ρ∗ θ′∗ θ−′∗ α′2∗

]′
and

pt :=
[
p′1t p′2t

]′
:=
[
yt−1 x+′

t−1 x′t−1 z′2t

]′
.
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Note that ξ2∗ and p2t are identical to α2∗ and z2t, respectively, where θ∗ := θ+
∗ − θ−∗ . If we attempt to

estimate the vector of unknown parameters, ξ∗, in (20) by OLS, we obtain:

ξ̂T :=

(
T∑
t=1

ptp
′
t

)−1( T∑
t=1

pt∆yt

)
.

We demonstrate that the inverse matrix in ξ̂T is asymptotically singular in the following lemma:

Lemma 5. Given Assumption 1:

(i) D̈−1
1,T

(∑T
t=1 p1tp

′
1t

)
D̈−1

1,T ⇒ P11, where D̈1,T := diag[T 3/2I1+k, T Ik] and:

P11 :=


1
3δ

2
∗

1
3δ∗µ

+′
∗ δ∗

∫ 1
0 rBx(r)′dr

1
3δ∗µ

+
∗

1
3µ

+
∗ µ

+′
∗ µ+

∗
∫ 1

0 rBx(r)′dr

δ∗
∫ 1

0 rBx(r)dr
∫ 1

0 rBx(r)drµ+′
∗

∫ 1
0 Bx(r)Bx(r)′dr

 ;

(ii) D̈−1
1,T

(∑T
t=1 p1tp

′
2t

)
D̈−1

2,T ⇒ P12, where D̈2,T := diag[T 1/2I1+p+2qk] and:

P12 :=


1
2δ∗

1
2δ

2
∗ι
′
p−1

1
2δ∗ι

′
q ⊗ µ+′

∗
1
2δ∗ι

′
q ⊗ µ−′∗

1
2µ

+
∗

1
2δ∗µ

+
∗ ι
′
p−1

1
2ι
′
q ⊗ µ+

∗ µ
+′
∗

1
2ι
′
q ⊗ µ+

∗ µ
−′
∗∫ 1

0 Bx(r)dr δ∗
∫ 1

0 Bx(r)drι′p−1 ι′q ⊗
∫ 1

0 Bx(r)drµ+′
∗ ι′q ⊗

∫ 1
0 Bx(r)drµ−′∗

 ; and

(iii) D̈−1
2,T

(∑T
t=1 p2tp

′
2t

)
D̈−1

2,T
P→ P22 := M22. �

We omit the proof of Lemma 5, as it can be easily derived from the proof of Lemma 1. Let D̈T :=

diag[T 3/2I1+k, T Ik, T
1/2I1+p+2qk], then:

D̈−1
T

(
T∑
t=1

ptp
′
t

)
D̈−1
T ⇒ P :=

 P11 P12

P21 P22

 , (21)

where P21 := P ′12. Note that P is singular, so it is difficult to obtain the limit distribution of ξ̂T using the

one-step approach even after applying the re-parameterization of the long-run levels relationship in (11).
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Sample Size 100 250 500 750 1,000
First Step OLS FM OLS FM OLS FM OLS FM OLS FM

ϕ∗ Second Step OLS OLS OLS OLS OLS OLS OLS OLS OLS OLS
-0.50 β+

∗ -13.95 -3.76 -14.54 -1.51 -14.74 0.68 -14.62 1.95 -14.67 2.19
β−∗ -13.97 -0.89 -14.55 -0.17 -14.76 1.45 -14.65 2.53 -14.65 2.62
ρ∗ -0.36 -0.29 -0.19 -0.15 -0.11 -0.04 -0.08 -0.01 -0.08 -0.02
ϕ∗ 0.55 0.28 0.36 0.15 0.25 0.06 0.20 0.03 0.18 0.03
π+
∗ -0.26 0.04 -0.16 0.10 -0.10 0.12 -0.09 0.12 -0.10 0.08
π−∗ -0.44 -0.08 -0.31 -0.07 -0.21 0.00 -0.21 -0.03 -0.14 0.03

-0.25 β+
∗ -9.84 -2.03 -10.11 -0.35 -10.20 1.05 -9.99 1.57 -10.22 1.65
β−∗ -9.89 0.18 -10.16 0.65 -10.18 1.59 -9.98 1.95 -10.18 1.96
ρ∗ -0.30 -0.26 -0.17 -0.16 -0.10 -0.09 -0.07 -0.05 -0.07 -0.06
ϕ∗ 0.48 0.16 0.32 0.06 0.24 0.03 0.20 0.02 0.17 0.01
π+
∗ -0.24 0.02 -0.14 0.07 -0.12 0.05 -0.11 0.04 -0.12 0.02
π−∗ -0.32 -0.05 -0.23 -0.04 -0.14 0.02 -0.11 0.02 -0.11 0.00

0.00 β+
∗ -5.68 -1.03 -5.42 0.40 -5.60 0.61 -5.39 0.82 -5.55 0.78
β−∗ -5.71 0.36 -5.45 1.07 -5.61 0.93 -5.40 1.05 -5.55 0.95
ρ∗ -0.35 -0.34 -0.20 -0.19 -0.13 -0.13 -0.12 -0.12 -0.11 -0.11
ϕ∗ 0.28 0.07 0.17 0.00 0.13 0.00 0.12 0.00 0.08 -0.02
π+
∗ -0.18 -0.06 -0.09 0.03 -0.07 0.00 -0.02 0.04 -0.02 0.04
π−∗ -0.26 -0.11 -0.14 -0.05 -0.11 -0.04 -0.14 -0.08 -0.10 -0.06

0.25 β+
∗ -0.94 -0.58 -0.88 -0.31 -0.88 -0.59 -0.77 -0.55 -0.80 -0.54
β−∗ -1.02 -0.30 -0.92 -0.16 -0.89 -0.52 -0.77 -0.49 -0.81 -0.51
ρ∗ -0.35 -0.36 -0.22 -0.23 -0.16 -0.17 -0.11 -0.12 -0.11 -0.11
ϕ∗ 0.06 0.02 0.04 0.00 0.02 0.00 0.01 -0.01 0.01 0.00
π+
∗ -0.04 -0.11 -0.02 -0.07 -0.05 -0.09 0.01 -0.03 0.01 -0.02
π−∗ -0.07 -0.15 -0.08 -0.13 0.01 -0.03 -0.02 -0.06 -0.01 -0.04

0.50 β+
∗ 3.45 -2.31 3.58 -2.65 3.52 -3.40 3.62 -2.37 3.60 -2.42
β−∗ 3.43 -3.47 3.53 -3.11 3.51 -3.65 3.61 -2.50 3.58 -2.52
ρ∗ -0.22 -0.19 -0.13 -0.12 -0.10 -0.08 -0.07 -0.06 -0.07 -0.07
ϕ∗ -0.09 0.02 -0.05 0.02 -0.04 0.02 -0.03 0.02 -0.04 0.00
π+
∗ 0.11 -0.21 0.08 -0.14 0.00 -0.16 0.06 -0.06 0.06 -0.04
π−∗ 0.13 -0.21 0.07 -0.16 0.08 -0.08 0.03 -0.08 0.02 -0.07

Table 1: FINITE SAMPLE BIAS. This table reports the finite sample bias associated with our two-step
estimation procedure, both in the case where OLS is used in the first step and in the case where FM-OLS
is used in the first step. In all cases, OLS is used in the second step. The data is generated as
follows: ∆yt = −(2/3)ut−1 + ϕ∗∆yt−1 + ∆x+

t + (1/2)∆x−t + et, where ut := yt − 2x+
t − x−t ,

∆xt = 0.5∆xt−1 +
√

1− 0.52vt, and (et, vt)
′ ∼ IIDN(02, I2). The simulation results are obtained using

R = 5, 000 replications.
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Sample Size 100 250 500 750 1,000
First Step OLS FM OLS FM OLS FM OLS FM OLS FM

ϕ∗ Second Step OLS OLS OLS OLS OLS OLS OLS OLS OLS OLS
-0.50 β+

∗ 290.07 92.10 308.75 47.24 316.53 33.89 309.60 34.38 317.14 32.37
β−∗ 294.96 103.96 314.89 49.31 323.88 38.72 314.44 41.63 317.41 36.63
ρ∗ 0.64 0.62 0.42 0.40 0.35 0.34 0.34 0.33 0.33 0.32
ϕ∗ 0.63 0.38 0.39 0.26 0.30 0.23 0.27 0.22 0.27 0.23
π+
∗ 6.16 5.34 4.82 4.30 4.42 4.16 4.33 4.14 4.11 3.98
π−∗ 6.17 5.32 4.93 4.31 4.53 4.11 4.33 4.04 4.18 3.95

-0.25 β+
∗ 157.44 56.03 162.25 33.08 162.94 27.45 155.82 25.23 162.62 25.17
β−∗ 162.01 72.54 164.97 37.75 163.31 30.82 154.90 27.96 161.96 27.41
ρ∗ 0.68 0.68 0.51 0.50 0.47 0.47 0.45 0.45 0.45 0.45
ϕ∗ 0.65 0.44 0.49 0.38 0.42 0.36 0.39 0.34 0.39 0.35
π+
∗ 5.48 5.08 4.48 4.26 4.20 4.09 4.26 4.15 4.09 4.00
π−∗ 5.58 5.04 4.58 4.32 4.09 3.92 4.11 3.99 4.06 3.96

0.00 β+
∗ 71.88 40.88 61.20 24.89 63.08 22.42 58.96 19.88 62.24 20.32
β−∗ 72.55 46.21 62.50 29.14 63.37 23.75 58.57 21.07 61.75 21.10
ρ∗ 0.79 0.79 0.64 0.64 0.57 0.57 0.57 0.57 0.57 0.57
ϕ∗ 0.48 0.44 0.42 0.40 0.40 0.39 0.39 0.38 0.40 0.40
π+
∗ 4.96 4.81 4.40 4.31 4.01 3.96 4.23 4.22 4.10 4.08
π−∗ 4.96 4.78 4.41 4.32 4.03 3.96 4.07 4.01 3.98 3.94

0.25 β+
∗ 24.60 28.47 19.84 20.19 18.52 18.60 18.42 18.62 17.39 17.18
β−∗ 25.14 36.22 20.41 21.39 18.71 18.75 18.18 18.48 17.24 17.01
ρ∗ 0.72 0.73 0.59 0.60 0.56 0.56 0.57 0.57 0.57 0.57
ϕ∗ 0.35 0.39 0.34 0.36 0.35 0.36 0.34 0.35 0.35 0.35
π+
∗ 4.65 4.64 4.24 4.24 4.14 4.15 4.02 4.02 4.12 4.12
π−∗ 4.65 4.70 4.18 4.18 4.03 4.04 3.90 3.90 3.89 3.89

0.50 β+
∗ 38.92 39.84 35.34 31.54 32.78 34.45 33.36 25.86 32.66 25.45
β−∗ 41.36 71.65 34.80 38.13 33.06 38.17 33.71 27.18 32.68 26.25
ρ∗ 0.45 0.44 0.41 0.41 0.39 0.39 0.39 0.39 0.38 0.38
ϕ∗ 0.29 0.31 0.28 0.29 0.27 0.27 0.27 0.27 0.28 0.28
π+
∗ 4.54 4.58 4.18 4.19 4.18 4.20 3.94 3.93 3.93 3.93
π−∗ 4.64 4.71 4.17 4.20 3.98 3.98 3.89 3.90 4.07 4.07

Table 2: FINITE SAMPLE MEAN SQUARED ERROR (MSE) OF THE ESTIMATORS. This table reports the
finite sample MSE associated with our two-step estimation procedure, both in the case where OLS is used in
the first step and in the case where FM-OLS is used in the first step. In all cases, OLS is used in the second
step. The data is generated as follows: ∆yt = −(2/3)ut−1 + ϕ∗∆yt−1 + ∆x+

t + (1/2)∆x−t + et, where
ut := yt − 2x+

t − x
−
t , ∆xt = 0.5∆xt−1 +

√
1− 0.52vt, and (et, vt)

′ ∼ IIDN(02, I2). The simulation
results are obtained using R = 5, 000 replications.
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ϕ∗ sample size 100 250 500 750 1,000
-0.50 1% 2.44 1.60 0.98 1.18 1.12

5% 8.06 6.06 5.42 5.46 6.02
10% 13.82 11.00 10.90 10.36 10.94

-0.25 1% 2.38 1.74 1.46 1.30 1.14
5% 7.38 6.44 6.02 5.36 5.30
10% 12.90 11.38 11.28 10.54 10.48

0.00 1% 2.12 1.18 1.22 1.26 0.98
5% 7.30 5.86 5.76 6.00 5.20
10% 13.40 11.26 10.94 11.16 10.22

0.25 1% 2.28 1.42 1.36 0.96 0.82
5% 7.32 6.14 5.84 5.12 4.68
10% 13.42 11.40 10.96 9.76 9.50

0.50 1% 2.02 1.80 0.98 1.10 1.22
5% 6.64 6.44 5.44 5.52 5.54
10% 11.84 11.54 10.62 10.60 10.74

Table 3: EMPIRICAL LEVELS THE WALD TEST FOR SHORT-RUN SYMMETRY (IN PERCENT). This table
reports the empirical levels of testing the short-run parameters, where FM-OLS is used in the first step
and OLS is used in the second step. The data is generated as follows: ∆yt = −(2/3)ut−1 + ϕ∗∆yt−1 +
(1/2)∆x+

t +(1/2)∆x−t +et, where ut := yt−2x+
t −x

−
t , ∆xt = 0.5∆xt−1 +

√
1− 0.52vt, and (et, vt)

′ ∼
IIDN(02, I2). H(s)

0 : π+
∗ − π−∗ = 0 vs. H(s)

1 : H0 : π+
∗ − π−∗ 6= 0. The simulation results are obtained

using R = 5, 000 replications.

ϕ∗ sample size 100 250 500 750 1,000
-0.50 1% 17.86 44.00 78.48 93.50 98.40

5% 35.38 66.66 91.82 98.44 99.76
10% 45.56 76.70 95.76 99.34 99.92

-0.25 1% 17.58 44.84 79.40 93.70 98.32
5% 34.96 66.66 91.90 98.26 99.72
10% 46.04 76.64 95.96 99.14 99.86

0.00 1% 17.26 43.16 78.56 93.28 98.60
5% 35.66 66.68 92.38 98.14 99.72
10% 46.62 76.14 96.06 99.18 99.90

0.25 1% 17.90 43.02 78.76 93.34 98.72
5% 35.02 66.14 92.12 98.32 99.68
10% 45.80 76.24 95.48 99.34 99.98

0.50 1% 17.50 42.82 77.82 92.94 98.54
5% 34.20 65.78 91.32 98.28 99.78
10% 44.90 76.06 94.90 99.26 99.92

Table 4: EMPIRICAL POWER THE WALD TEST FOR SHORT-RUN SYMMETRY (IN PERCENT). This table
reports the empirical rejection rates of testing the short-run parameters, where FM-OLS is used in the first
step and OLS is used in the second step. The data is generated as follows: ∆yt = −(2/3)ut−1 +ϕ∗∆yt−1 +
∆x+

t + (1/2)∆x−t + et, where ut := yt − 2x+
t − x

−
t , ∆xt = 0.5∆xt−1 +

√
1− 0.52vt, and (et, vt)

′ ∼
IIDN(02, I2). H(s)

0 : π+
∗ − π−∗ = 0 vs. H(s)

1 : H0 : π+
∗ − π−∗ 6= 0. The simulation results are obtained

using R = 5, 000 replications.
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ϕ∗ sample size 100 250 500 750 1,000
-0.50 1% 12.40 5.06 2.38 1.82 1.44

5% 23.34 12.88 7.96 7.70 5.90
10% 31.50 21.04 14.08 13.22 11.46

-0.25 1% 8.74 3.80 2.54 1.74 1.18
5% 19.06 11.10 8.44 6.62 5.48
10% 27.22 18.36 14.96 11.68 10.48

0.00 1% 4.96 2.92 1.84 1.72 1.42
5% 13.86 9.76 7.20 6.60 6.12
10% 21.40 16.28 13.02 12.20 11.34

0.25 1% 3.32 1.62 1.34 1.22 1.06
5% 10.38 6.24 5.56 5.66 5.60
10% 17.28 11.42 10.96 11.22 10.70

0.50 1% 1.70 0.86 0.78 0.66 0.72
5% 5.82 4.06 4.60 4.30 4.22
10% 10.74 8.20 9.88 9.08 9.12

Table 5: EMPIRICAL LEVELS THE WALD TEST FOR LONG-RUN SYMMETRY. This table reports the
empirical level of the Wald test statistic for the long-run parameter, where FM-OLS is used in the first step.
The data is generated as follows: ∆yt = −(2/3)ut−1 + ϕ∗∆yt−1 + (1/3)∆x+

t + (1/2)∆x−t + et, where
ut := yt − x+

t − x
−
t , ∆xt = 0.5∆xt−1 +

√
1− 0.52vt, and (et, vt)

′ ∼ IIDN(02, I2). H(`)
0 : β+

∗ − β−∗ = 0

vs. H(`)
1 : β+

∗ − β−∗ 6= 0. The simulation results are obtained using R = 5, 000 replications.

ϕ∗ sample size 100 250 500 750 1,000
-0.50 1% 9.80 20.76 83.66 97.34 99.76

5% 20.00 35.78 89.36 98.54 99.96
10% 27.66 44.70 91.98 98.92 99.96

-0.25 1% 7.90 26.04 88.16 98.44 99.82
5% 17.98 41.74 92.88 99.32 99.92
10% 25.08 51.30 94.58 99.60 99.94

0.00 1% 5.74 32.24 91.22 99.20 99.86
5% 14.72 49.46 95.12 99.68 99.96
10% 22.40 58.54 96.66 99.80 99.98

0.25 1% 4.4 34.46 92.36 99.38 99.96
5% 12.08 52.82 96.04 99.70 100.0
10% 19.2 61.96 97.22 99.82 100.0

0.50 1% 2.92 25.40 90.96 99.16 99.98
5% 9.44 47.06 95.40 99.70 100.0
10% 16.08 58.68 96.98 99.82 100.0

Table 6: EMPIRICAL POWER THE WALD TEST FOR LONG-RUN SYMMETRY (IN PERCENT). This table
shows the empirical power of the Wald test statistic for the long-run parameter, where FM-OLS is used in the
first step. The data is generated as follows: ∆yt = −(2/3)ut−1 +ϕ∗∆yt−1 + (1/3)∆x+

t + (1/2)∆x−t + et,
where ut := yt − 1.01x+

t − x
−
t , ∆xt = 0.5∆xt−1 +

√
1− 0.52vt, and (et, vt)

′ ∼ IIDN(02, I2). H(`)
0 :

β+
∗ − β−∗ = 0 vs. H(`)

1 : β+
∗ − β−∗ 6= 0. The simulation results are obtained using R = 5, 000 replications.
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Real Earnings Real Dividends
Level Difference Level Difference

Mean 41.059 0.374 19.289 0.091
Median 38.462 0.375 18.988 0.064
Maximum 103.475 14.383 31.585 1.257
Minimum 11.177 -13.117 8.422 -1.289
Standard Deviation 15.951 2.458 4.296 0.352
Skewness 1.353 -0.435 -0.239 0.319
Excess Kurtosis 2.275 9.909 0.326 2.223

Table 7: COMMON SAMPLE DESCRIPTIVE STATISTICS. Descriptive statistics are computed over 243
quarters from 1946Q2–2006Q4. Both real earnings and real dividends are measured in US Dollars at
January 2000 prices. We convert from the original monthly sampling frequency used by Shiller to quarterly
frequency by taking end-of-period values.

One-step NARDL Two step FM/OLS
Estimate S.E. Estimate S.E.

Intercept – – 17.774 1.558
β+ 0.168 0.075 0.170 0.038
β− 0.143 0.099 0.135 0.049

Table 8: LONG-RUN PARAMETER ESTIMATES. This table reports the long-run parameter estimates
obtained from the single-step estimation procedure of SYG as well as our two-step estimation procedure,
where FM-OLS is used in the first step and OLS is used in the second step. The long-run parameters are
obtained from the single-step estimation results as β̂+ = −θ̂+/ρ̂ and β̂− = −θ̂−/ρ̂ and the corresponding
analytical standard errors are computed via the Delta method. Note that the intercept of the cointegrating
equation is not identified in the single-step estimation procedure. The long-run parameters are obtained from
first stage FM-OLS estimation results as β̂+ = λ̂ + η̂ and β̂− = η̂. The standard error of β̂− is obtained
directly, while the analytical standard error of β̂+ is computed via the Delta method.
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One-step NARDL Two-step FM/OLS
Estimate S.E. Estimate S.E.

Intercept 0.406 0.146 0.008 0.030
Dt−1 -0.031 0.010 – –
E+
t−1 0.005 0.003 – –

E−t−1 0.004 0.003 – –
ECMt−1 – – -0.032 0.010
∆Dt−1 0.245 0.066 0.245 0.066
∆Dt−2 0.161 0.067 0.159 0.067
∆Dt−3 0.139 0.066 0.136 0.065
∆E+

t 0.052 0.017 0.049 0.015
∆E+

t−1 -0.012 0.018 -0.014 0.017
∆E+

t−2 0.004 0.018 0.003 0.018
∆E+

t−3 0.006 0.017 0.004 0.017
∆E−t 0.007 0.021 0.010 0.020
∆E−t−1 0.005 0.026 0.006 0.026
∆E−t−2 0.014 0.026 0.014 0.026
∆E−t−3 -0.024 0.021 -0.021 0.020
Adjusted R2 0.285 0.291
X 2

S.Corr. 0.092 0.103
X 2

Hetero. 0.064 0.094

Table 9: DYNAMIC PARAMETER ESTIMATES. This table reports parameter estimates for the NARDL(4,4)
model in error correction form, estimated in a single-step following SYG and using our two-step procedure,
where FM-OLS is used in the first step and OLS is used in the second step. χ2

S.Corr. denotes the
Breusch–Godfrey Lagrange multiplier test for serial correlation up to order four. χ2

Hetero. denotes the
Breusch–Pagan–Godfrey Lagrange multiplier test for residual heteroskedasticity. The values reported for
these two tests are asymptotic p-values.
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