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Abstract

In this paper, we study decision making and games with vector outcomes. We

provide a general framework where outcomes lie in a real topological vector space and

the decision maker’s preferences over outcomes are described by a preference cone,

which is defined as a convex cone satisfying a continuity axiom. Further, we define a

notion of utility representation and introduce a duality between outcomes and utilities.

We provide conditions under which a preference cone is represented by a utility and

is the dual of a set of utilities. We formulate a decision-making problem with vector

outcomes and study optimal choices. We also consider games with vector outcomes and

characterize the set of equilibria. Lastly, we discuss the problem of equilibrium selection

based on our characterization.
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1 Introduction

In many real-world decision-making or game situations, the outcome of a choice involves

different attributes that can be evaluated separately, but it is difficult to aggregate them into

a single utility measure. Zeleny (1975) provides several examples of such situations. If we

are to analyze these situations formally, it is natural to work with models where outcomes

are vectors and agents have incomplete preferences over outcomes. The goal of this paper
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is to introduce a general framework for studying decision making and games with vector

outcomes and to present some fundamental results.

In order to motivate our study from a theoretical point of view, we introduce the setting

and the main result of Shapley (1959).1 He considers a two-player zero-sum game with

vector payoffs or outcomes.2 Each player has a finite number of pure strategies, and the

outcome produced when players 1 and 2 choose pure strategies i and j, respectively, is

denoted by vij . Each outcome lies in some Euclidean space Rm and represents player 1’s

gains in different commodities. Let V = [vij ] be the matrix of outcomes. When the players

use mixed strategies, say p for player 1 and q for player 2, the outcome can be written as

pV q :=
∑

i

∑
j pivijqj , which also lies in Rm.

Shapley (1959) uses two partial orders defined on Rm, the strong partial order ≻s and

the weak partial order ≻w.
3 For any two vectors x and y in Rm, we write x ≻s y if xk ≥ yk

for all k = 1, . . . ,m and xk > yk for some k = 1, . . . ,m, while we write x ≻w y if xk > yk

for all k = 1, . . . ,m. Next, he notes the following duality between the two partial orders:

x ≻w 0 if and only if x · y > 0 for all y ≻s 0, (1)

x ≻s 0 if and only if x · y > 0 for all y ≻w 0, (2)

where x·y denotes the dot product of the two vectors x and y in Rm. Based on the two partial

orders, Shapley (1959) defines two notions of equilibria. A mixed strategy profile (p∗, q∗)

is a strong equilibrium of the zero-sum game V if there is no p such that pV q∗ ≻s p∗V q∗

and there is no q such that p∗V q∗ ≻s p
∗V q. Similarly, (p∗, q∗) is a weak equilibrium of V if

there is no p such that pV q∗ ≻w p∗V q∗ and there is no q such that p∗V q∗ ≻w p∗V q.

Given any vector γ ∈ Rm, we can consider a standard zero-sum game with scalar payoffs

where γ · vij is the payoff to player 1 when players 1 and 2 choose pure strategies i and

j, respectively. Let γV denote the scalar payoff function. Shapley’s (1959) main result

characterizes the two types of equilibria of a zero-sum game with vector payoffs by using

Nash equilibria of related games with scalar payoffs. He shows that (p∗, q∗) is a strong

equilibrium of the two-player zero-sum game V with vector payoffs if and only if it is a

Nash equilibrium of the game (γV,−δV ) with scalar payoffs for some γ ≻w 0 and δ ≻w 0,

1Zhao (2018) recognizes Shapley’s (1959) work as one of “three little-known and yet still significant
contributions of Lloyd Shapley” and writes that “MOG (multiobjective game) is virtually unknown in
today’s economics literature and its great potentials remain to be explored.”

2In this paper, we use the terms “payoffs” and “outcomes” interchangeably to mean the result of a choice.
We later introduce “utilities” that represent an agent’s preferences over vector payoffs/outcomes. In game
theory (especially when dealing with scalar payoffs), payoffs are sometimes interpreted as a utility measure.
Thus, to avoid potential confusion between payoffs and utilities, we use the term “outcomes” more frequently
than “payoffs.”

3See Aumann (1962, Sec. 3) for an explanation of the terminology. The strong order is also called the
Pareto order in the literature.
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and that (p∗, q∗) is a weak equilibrium of V if and only if it is a Nash equilibrium of

(γV,−δV ) for some γ ≻s 0 and δ ≻s 0.

Note that a strong equilibrium is defined with the strong order ≻s while it is character-

ized with the weak order ≻w. Similarly, a weak equilibrium is defined with ≻w while it is

characterized with ≻s. The characterization stems from the duality between the two orders,

as given in (1) and (2). The main objective of this paper is to investigate the characteriza-

tion of equilibria and the duality between the two orders in a more general context. In fact,

the main result of Shapley (1959) has been generalized or modified to more general settings

in the existing literature. First, Shapley (1959) mentions that his result can be extended

to two-player non-zero-sum games. Aumann (1962) generalizes Shapley’s (1959) result by

allowing a large class of preferences and mentions that the result can be further extended

to n-player non-zero-sum games. Bade (2005) studies games with incomplete preferences.

In a general setting, she relates equilibria of a game with incomplete preferences to those

of games with complete preferences. She also provides a characterization of equilibria in a

specific setting where outcomes lie in Euclidean spaces and players’ preferences over out-

comes are given by the strong order. Mármol et al. (2017) supplement Bade’s (2005) results

by considering the weak order as well. They utilize a duality relationship when deriving a

characterization of equilibria.

Our framework is general in the following aspects. First, we allow for outcomes in

topological vector spaces, which include infinite-dimensional spaces. In contrast, the afore-

mentioned existing works focus on finite-dimensional outcome spaces. Second, we consider a

class of preferences described by a convex cone satisfying a continuity axiom, which includes

the strong and weak orders as special cases and corresponds to the class assumed in Aumann

(1962). Third, we allow infinite action spaces and study pure strategy equilibria, as in Bade

(2005). This covers the case of finite pure strategy spaces and mixed strategy equilibria,

which is the focus of Shapley (1959) and Aumann (1962). Last, while characterizing opti-

mal choices and equilibria based on duality, we consider more general forms of preferences

and sets of utilities than those assumed in Mármol et al. (2017). These features of our

framework enable us to analyze a wide range of decision-making and game scenarios with

vector outcomes. For example, when comparing two probability distributions, a decision

maker may prefer one that first-order stochastically dominates the other; such preferences

can be captured in our framework. Moreover, when outcomes involve infinitely many states

or time periods, we may need to use an infinite-dimensional vector space as the outcome

space.

We take a real topological vector space as the outcome space and its topological dual

space as the utility space. An agent’s preferences over outcomes are described by a convex

cone in the outcome space that satisfies a continuity axiom, and such a cone is called a
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preference cone. We define the notion of utility representation of a preference cone as well

as a duality between a set of outcomes and a set of utilities, generalizing the duality in

(1) and (2). The basic properties of dual sets (Lemma 1) provide us with justifications

for using a preference cone. Moreover, describing preferences by a convex cone is quite

common in the vector (or multicriteria) optimization literature (see, for example, Boţ et

al., 2009; Jahn, 2011; Yu, 1974). We investigate conditions under which a given preference

cone admits a utility representation (Theorem 1) and can be completely described by a

set of utilities (Theorem 2). These two questions are addressed in Aumann (1962) with a

finite-dimensional outcome space. There are related results in the vector optimization and

economics literature, and we mention them after the respective theorems. In particular,

Dubra et al. (2004) examine the problem of representing a preference relation by a set of

utilities in a more structured context, and we compare their setup with ours in Remark 1

of Section 2.2.

Next, we characterize optimal choices in a decision-making problem with vector out-

comes by considering optimal choices in related decision-making problems where outcomes

are scalarized by utilities representing the decision maker’s preference cone (Theorem 3).

This result is analogous to scalarization results in vector optimization (see, for example,

Boţ et al., 2009; Ehrgott, 2005; Jahn, 2011). Then, we extend this result to games and

relate equilibria of a game with vector outcomes to Nash equilibria of related games where

each player’s payoffs are scalarized by utilities representing his preference cone (Theorem 4).

Our characterization of equilibria generalizes that of Shapley (1959) as well as some results

in the subsequent studies by Aumann (1962), Bade (2005), and Mármol et al. (2017).

According to our characterization result, once players select their utilities, playing a Nash

equilibrium of the scalarized game yields an equilibrium of the original game with vector

payoffs. Selecting a scalarization considerably reduces the multiplicity of equilibria, and

thus scalarization can serve as an equilibrium selection tool. We argue that players may

coordinate on a scalarization that produces desirable properties of the scalarized game (such

as those of zero-sum games or potential games). Given that a game with vector payoffs typ-

ically has a huge set of equilibria, various approaches to refine equilibria have been proposed

in the literature. For example, Ghose and Prasad (1989) consider equilibria with Pareto

optimal security levels using the concept of “Pareto optimal security strategies;” De Marco

and Morgan (2007) focus on equilibria that are stable with respect to perturbations on the

scalarization; and Hamel and Löhne (2018) introduce a refinement of equilibria based on

set relations. Our selection argument will complement these existing refinements.

The literature on games with vector payoffs4 began with Blackwell (1956) and Shapley

4In the literature, games with vector payoffs are also called multicriteria games, multiobjective games,
games with multiple goals, games with multiple payoffs, vector-valued games, etc.
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(1959). While decision making with vector payoffs has been studied extensively, especially

in the vector optimization literature, games with vector payoffs have been relatively less ex-

plored.5 However, in recent years, the literature has seen an increasing number of studies on

games with vector payoffs, and we mention some recent works, besides the aforementioned

works of Mármol et al. (2017) and Hamel and Löhne (2018). Rettieva (2017) proposes a

solution concept for dynamic multicriteria games based on the Nash bargaining solution.

Puerto and Perea (2018) study minimax and Pareto-optimal security payoff vectors for

general multicriteria zero-sum games. Kokkala et al. (2019) and Sasaki (2018) define ratio-

nalizability and examine its properties in the context of games with incomplete preferences

and those with vector payoffs. Zapata et al. (2019) consider scalarizations using a weighted

minimum function instead of a linear function and study the relationship between equilibria

of a game with vector payoffs and those of related scalarized games.

The rest of this paper is organized as follows. We introduce preferences and utilities

in Section 2. We study decision-making problems with vector outcomes in Section 3 and

games with vector outcomes in Section 4. We conclude in Section 5.

2 Preferences and Utilities

2.1 Preferences

We consider a scenario where a decision maker chooses an alternative and the chosen al-

ternative leads to an outcome. An outcome lies in a topological vector space X over the

real field. The decision maker has preferences over outcomes, and they are described by a

binary relation ≻ on X. For any outcomes x and y, x ≻ y means that the decision maker

strictly prefers x to y. We impose the following assumptions on ≻.

(A1; Translation Invariance) For any x, y, z ∈ X, x ≻ y implies x+ z ≻ y + z.

(A2; Nontriviality) There exists x, y ∈ X such that x ≻ y.

(A3; Irreflexivity) x ≻ x does not hold for any x ∈ X.

(A4; Transitivity) For any x, y, z ∈ X, x ≻ y and y ≻ z implies x ≻ z.

(A5; Homotheticity) For any x, y ∈ X and α > 0, x ≻ y implies αx ≻ αy.

(A6; Continuity) If there is a net {xd} with limit x ∈ X such that xd ≻ 0 for all d, then

0 ≻ x does not hold.

If x ≻ y, then x− y is an improvement direction from y. Under (A1), any improvement

direction is independent of starting points, and thus we can describe the decision maker’s

5See, for example, Boţ et al. (2009), Ehrgott (2005), Jahn (2011), Sawaragi et al. (1985), Tanino and
Sawaragi (1979), and Yu (1974) for studies on multicriteria decision making and vector optimization. See
also Corley (1985), Nieuwenhuis (1983), Zeleny (1975), Zhao (1991, 2018), and references therein for studies
on games with vector payoffs.
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preferences by the set of improvement directions, denoted by W ⊆ X.6 That is, if d ∈ W ,

then x+ d ≻ x for all x ∈ X. For example, the set of improvement directions generated by

the strong order ≻s on Rm is Ws := {x ∈ Rm : xk ≥ 0 ∀k = 1, . . . ,m} \ {0}, while the weak

order ≻w on Rm yields Ww := {x ∈ Rm : xk > 0 ∀k = 1, . . . ,m}.
With (A1) imposed, the properties of ≻ can be translated to those of W as follows. ≻

satisfies (A2) if and only if W ̸= ∅. ≻ satisfies (A3) if and only if 0 /∈ W . ≻ satisfies (A4) if

and only if W +W ⊆ W . ≻ satisfies (A5) if and only if W is a cone.7 ≻ satisfies (A6) if and

only if W ∩ (−W ) = ∅.8 ≻ satisfies (A4) and (A5) if and only if W is a convex cone, while

imposing (A3) in addition makes W a blunt convex cone.9 Note that (A6) implies (A3).

Thus, a strict preference relation ≻ on X satisfying (A1)–(A6) can be expressed as a set of

improvement directions W ⊆ X that is a nonempty convex cone satisfying W ∩ (−W ) = ∅,

and vice versa. We say that W ⊆ X is a (continuous strict) preference cone if it is a

nonempty convex cone and satisfies W ∩ (−W ) = ∅. It is easy to see that the two sets Ws

and Ww defined above are preference cones.

In the following, we will maintain (A1)–(A6) for the decision maker’s preferences and

describe them by a preference cone. A binary relation ≻ on X is called a (strict) partial

order if it is irreflexive and transitive. So if the vector space X is equipped with a preference

cone W , we say that X is partially ordered by W .

We use strict preferences as a primitive because indifference does not play a role in our

analysis. Alternatively, we can start from weak preferences % and derive strict preferences

≻ by defining x ≻ y if x % y and not y % x. In the vector optimization literature,

it is common to begin with a (non-strict) partial order (i.e., a reflexive, transitive, and

antisymmetric10 binary relation) % and associate it with a (weak) preference cone C such

that x % y if and only if x − y ∈ C (see, for example, Jahn, 2011). Since antisymmetry

excludes indifference between two distinct outcomes, our approach can cover this alternative

approach with W = C \ {0}. Meanwhile, our approach is more general in that it can be

applied to some weak preferences that are not antisymmetric. For example, considerX = R2

and C = {(x1, x2) ∈ X : x1+x2 ≥ 0}. Then the weak preference relation % associated with

C is not antisymmetric, but the strict preference relation ≻ derived from % satisfies (A1)–

(A6) with W = {(x1, x2) ∈ X : x1 + x2 > 0}. Since x � y and y � x does not necessarily

mean that the decision maker is indifferent between x and y under our assumptions on

≻, we deal with the case of incomplete preferences, which is natural in the case of vector

6Yu (1974) provides an analysis on the case where the set of improvement directions depends on the
starting point.

7A set B in a real vector space is a cone if for any x ∈ B and α > 0, αx ∈ B.
8For any set B in a topological space, B denotes the closure of B.
9A set B in a real vector space is a convex cone if for any x, y ∈ B and α, β > 0, αx+ βy ∈ B. A convex

cone B is blunt if 0 /∈ B.
10A binary relation % is antisymmetric if x % y and y % x implies x = y.
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outcomes.

2.2 Utilities

We present our concept of utility representation.

Definition 1. A utility u representing a preference cone W ⊆ X is a continuous linear

functional on X such that x ∈ W implies u(x) > 0.

Our concept of utility representation is analogous to that of Aumann (1962) in that

we require only one-way implications. This kind of utilities is called Richter–Peleg utility

functions in Ok (2002), and it appears frequently in the literature on incomplete preferences.

Let X∗ be the topological dual space of X, that is, the set of all continuous linear

functionals on X. Note that X∗ can be considered as the space of candidates for utilities.

So we call X the outcome space and X∗ the utility space. For any Y ⊆ X, define

Y + = {u ∈ X∗ : u(x) > 0 for all x ∈ Y }. (3)

That is, Y + is the set of utilities that yield positive values for all outcomes in Y . Also, for

any Z ⊆ X∗, define

+Z = {x ∈ X : u(x) > 0 for all u ∈ Z}. (4)

That is, +Z is the set of outcomes that are assigned positive values for all utilities in Z.

The first operator Y + in (3) takes a subset in the outcome space and generates a subset

in the utility space, while the second operator +Z in (4) operates in the opposite direction.

We say that Y ⊆ X is the dual of Z ⊆ X∗ if Y = +Z. Similarly, we say that Z ⊆ X∗ is the

dual of Y ⊆ X if Z = Y +. When both Y = +Z and Z = Y + hold, Y and Z are dual of

each other. This duality generalizes the duality between the strong and weak partial orders

observed in (1) and (2). When X = Rm, X∗ is also given by Rm, and the relationships in

(1) and (2) can be expressed as Ww = (Ws)
+ = +(Ws) and Ws = (Ww)

+ = +(Ww). Thus,

the two sets Ws and Ww are dual of each other, regardless of whether we take Ws or Ww

as a subset of the outcome space.

For any set B in a real vector space, let cone(B) be the smallest convex cone containing

B, that is,

cone(B) =


k∑

j=1

αjx
j : x1, . . . , xk ∈ B,α1, . . . , αk > 0, k ∈ {1, 2, . . .}

 .
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As a preliminary, we present basic properties of the dual sets Y + and +Z in the following

lemma.

Lemma 1. Let X be a real topological vector space, and let X∗ be its topological dual space.

(i) For any Y1 ⊆ Y2 ⊆ X and Z1 ⊆ Z2 ⊆ X∗, Y +
2 ⊆ Y +

1 and +Z2 ⊆ +Z1.

(ii) For any Y ⊆ X and Z ⊆ X∗, Y ⊆ +(Y +) and Z ⊆ (+Z)+.

(iii) For any ∅ ̸= Y ⊆ X and ∅ ̸= Z ⊆ X∗, Y + and +Z are blunt convex cones, Y +

satisfies Y + ∩ (−Y +) = ∅ if X is a normed space, and +Z satisfies +Z ∩ (−+Z) = ∅.

(iv) For any Y ⊆ X and Z ⊆ X∗, Y + = (cone(Y ))+ and +Z = +(cone(Z)).

Proof. (i) The result is immediate from the definitions.

(ii) Choose any x ∈ Y . Then u(x) > 0 for all u ∈ Y +. This implies x ∈ +(Y +), proving

Y ⊆ +(Y +).

(iii) Choose any u, v ∈ Y + and α, β > 0. For any x ∈ Y , u(x), v(x) > 0, and thus

(αu + βv)(x) = αu(x) + βv(x) > 0. Hence, αu + βv ∈ Y +. Since Y is nonempty and

0(x) = 0 for any x ∈ Y , the zero function cannot be in Y +. This shows that Y + is a

blunt convex cone. Suppose that X is a normed space. Then X∗ is also a normed space.

If Y + = ∅, we have Y + ∩ (−Y +) = ∅, and so we assume that Y + ̸= ∅. Choose any

u ∈ Y +. Then there exists a sequence {uk} in Y + that converges in norm to u. Choose any

x ∈ Y . Since uk ∈ Y +, we have uk(x) > 0 for all k. Since {uk} also converges in the weak-*

topology to u, we have u(x) ≥ 0. Suppose that u ∈ −Y +. Then −u ∈ Y +, and (−u)(x) > 0.

But then u(x) < 0, which is a contradiction. Hence, we obtain Y + ∩ (−Y +) = ∅.

(iv) Note that Y ⊆ cone(Y ), and thus (cone(Y ))+ ⊆ Y + by (i). Choose any u ∈ Y +

and any x ∈ cone(Y ). Then there is x1, . . . , xk ∈ Y and α1, . . . , αk > 0 such that x =

α1x
1 + · · ·+ αkx

k. Then u(x) = α1u(x
1) + · · ·+ αku(x

k) > 0 since u(y) > 0 for all y ∈ Y .

Hence u ∈ (cone(Y ))+, proving Y + ⊆ (cone(Y ))+.

The results about Z ⊆ X∗ can be proven analogously.

Note that the sets Y and Z do not need to be convex cones in the definitions (3) and

(4) as well as in Lemma 1. However, the results in Lemma 1(iii) and (iv) suggest that it

is natural to consider convex cones when we study dual sets. Lemma 1(iii) also shows that

the continuity assumption (A6) is met by dual sets. For a given preference cone W , W+ is

the set of utilities representing W . In the following theorem, we study conditions for the

existence of a utility.

Theorem 1. Let X be a real topological vector space partially ordered by a preference cone

W .

(i) Suppose that (a) X is locally convex and W is locally compact or (b) W is open. Then

there is a utility representing W . (That is, W+ ̸= ∅.)

(ii) If a set Y ⊆ X has Y + ̸= ∅, then Y ∩ (−Y ) = ∅.
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Proof. (i) First, suppose that X is locally convex and W is locally compact. If W = X,

then W ∩ (−W ) = −W ̸= ∅, a contradiction to our assumption that W ∩ (−W ) = ∅.

Hence, W ̸= X, and there is x̃ /∈ W . By Theorem 2.5 of Klee (1955) applied to W and

{αx̃ : α ≥ 0}, there exists u ∈ X∗ such that u(x) > 0 ≥ u(x̃) for all x ∈ W \ (−W ). Since

W ∩ (−W ) = ∅, we have (−W ) ∩W = ∅. Hence, W ⊆ W \ (−W ), and u ∈ W+.

Next, suppose that W is open. Since 0 /∈ W and W is nonempty and convex, by the

Hahn–Banach separation theorem, there exists u ∈ X∗ such that u(x) > u(0) = 0 for all

x ∈ W . Thus, u ∈ W+.

(ii) Suppose that Y + ̸= ∅. Choose any u ∈ Y +. Suppose to the contrary that there

is x ∈ Y ∩ (−Y ). Since x ∈ Y , we have u(x) ≥ 0. Since x ∈ −Y , we have −x ∈ Y and

u(−x) > 0. Then u(x) < 0, a contradiction. Thus, Y ∩ (−Y ) = ∅.

When X is a finite-dimensional real normed vector space, condition (a) in Theorem 1(i)

is satisfied. Hence, as shown in Theorem A of Aumann (1962), there is a utility if X is

finite-dimensional, and Theorem 1(i) can be considered as a generalization of this result.

The hypothesis in Theorem 1(i) is not necessary for the existence of a utility. In fact,

Theorem C of Kannai (1963) shows that there is a utility if X is a separable normed

vector space, which includes ℓp spaces for 1 ≤ p < ∞. For example, consider X = ℓ1 and

W = {x ∈ X : x ≥ 0} \ {0}.11 Then neither W is locally compact nor W is open. In this

case, X∗ is isomorphic to ℓ∞, and it can be seen that u = (1, 1, . . .) is a utility representing

W .12

There are topological vector spaces that have a trivial topological dual. As an example,

consider the space X = Lp with 0 < p < 1. The only nonempty convex open set in Lp

is the entire space (Rudin, 1991, Sec. 1.47). This implies that Lp is not locally convex

and that there cannot be an open preference cone. So neither condition (a) nor (b) in

Theorem 1(i) can be satisfied. We have 0 as the only continuous linear functional on Lp

(i.e., X∗ = {0}), and thus Y + = ∅ for any nonempty set Y ⊆ X. The assumption of

local convexity in Theorem 1(i) is imposed to exclude spaces like Lp with 0 < p < 1. Let

W be a preference cone, and let C = W ∪ {0}. In the optimization literature, the set

{u ∈ X∗ : u(x) ≥ 0 for all x ∈ W} is called the topological dual cone for C, and the set W+

is called the quasi-interior of the topological dual cone for C (see, for example, Jahn, 2011,

Def. 1.23). Corollary 3.19 and Theorem 3.38 of Jahn (2011) provide alternative sufficient

11We use x = (x1, x2, . . .) ≥ 0 to mean xk ≥ 0 for all k = 1, 2, . . ..
12Aumann (1962) provides an example of an infinite-dimensional partially ordered vector space without a

utility. In his example, X is the set of all infinite sequences of real numbers, and W = {x ∈ X : x ≥ 0}\{0}.
Suppose that there is a utility u representing W . Let ẽ1 = (1, 0, 0, . . .), ẽ2 = (0, 1, 0, . . .), and so on, and let
uk = u(ẽk) for all k = 1, 2, . . .. Note that each uk > 0 since ẽk ∈ W . Consider x̂ = (1/u1, 1/u2, . . .). Then
u(x̂) is infinite. From this, Aumann (1962) concludes that there cannot be a utility. However, his argument
would not work in our context. If we require X to be a topological vector space and a utility to be in X∗,
then the conclusion would be that x̂ does not belong to X because v(x) is finite for any x ∈ X and v ∈ X∗.
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conditions for the quasi-interior W+ to be nonempty. Both of them are concerned with

locally convex spaces; the latter is close to Theorem C of Kannai (1963) in that it assumes

a real separable normed space.

Theorem 1(ii) provides a necessary condition for Y + ̸= ∅. This result is already provided

in Theorem A of Kannai (1963) but included for completeness of discussion. It can be used

to justify our assumption that W ∩ (−W ) = ∅; without this assumption, there cannot be a

utility representing W . Moreover, since Y + = (cone(Y ))+ by Lemma 1(iv), our assumption

that W is a convex cone involves no loss of generality when we investigate whether W+ is

nonempty or not.

Next, we turn to the question of whether a preference cone W can be expressed as +Z

for some Z ⊆ X∗, that is, whether W is the dual of some set in the utility space. If this

is the case, we can describe the preferences W fully by a set of utilities. If, in addition,

Z = W+ holds (i.e., if W and Z are dual of each other), then it suffices to specify only

one of W and Z, as one of them can be completely determined by the other. Thus, in the

following theorem, we investigate conditions for the relationship W = +(W+).

Theorem 2. Let X be a real topological vector space partially ordered by a preference cone

W .

(i) Suppose that (a) X is locally convex and W is locally compact and (b) W is open or

W = W \ {0}. Then W = +(W+).

(ii) If Y is a proper subset of X and Y = +(Y +), then Y is a convex cone and Y ∩(−Y ) = ∅.

Proof. (i) Since W ⊆ +(W+) by Lemma 1(ii), it remains to show the other inclusion. For

this purpose, we will choose an arbitrary x̃ /∈ W and show that there exists u ∈ X∗ such that

u(x) > 0 ≥ u(x̃) for all x ∈ W . Then u ∈ W+ and x̃ /∈ +(W+), establishing +(W+) ⊆ W .

Suppose that (a) holds. First, suppose that W is open. Choose any x̃ /∈ W . Suppose

that x̃ ∈ W . Then by the Hahn–Banach separation theorem applied to W and {x̃}, there
exists u ∈ X∗ such that u(x) > u(x̃) for all x ∈ W . Since W is a cone, we have u(x) ≥ 0

for all x ∈ W and thus u(x̃) ≥ 0. Since 0 ∈ W , we have u(0) ≥ u(x̃). Hence, it follows that

u(x) > 0 = u(x̃), and we are done. Suppose that x̃ /∈ W . Then x̃ ̸= 0. Since W is locally

compact in locally convex X, applying Theorem 2.5 of Klee (1955), we obtain u ∈ X∗ such

that u(x) > 0 ≥ u(x̃) for all x ∈ W , as in the proof of Theorem 1(i).

Next, suppose that W = W \ {0}. Choose any x̃ /∈ W . Then either x̃ /∈ W or

x̃ = 0. Consider the case where x̃ /∈ W . Then, as above, there exists u ∈ X∗ such

that u(x) > 0 ≥ u(x̃) for all x ∈ W . By Theorem 1(i), W+ is nonempty, and thus by

Lemma 1(iii), we have 0 /∈ +(W+). This takes care of the case where x̃ = 0.

(ii) Suppose that Y is a proper subset of X and that Y = +(Y +). Suppose that Y + is

empty. Then Y = +(Y +) = X, a contradiction. Hence, Y + is nonempty. Since Y = +(Y +),

Lemma 1(iii) implies that Y is a convex cone and satisfies Y ∩ (−Y ) = ∅.
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When W = +(W+), we can describe the preference cone W by the set of utilities

representing W . Theorem 2 provides a sufficient condition for W = +(W+) as well as a

necessary one. As Y = +(Y +) implies that Y + ̸= ∅ for any proper subset Y of X, the

conditions in Theorem 2 are stronger than the corresponding ones in Theorem 1.

Neither condition (a) nor (b) in Theorem 2(i) is necessary for W = +(W+). Consider

the previous example of W = {x ∈ ℓ1 : x ≥ 0} \ {0}, which does not satisfy condition

(a). In this example, we have W+ = {u ∈ ℓ∞ : u ≫ 0}13 and W = +(W+). As another

example, consider W = {x ∈ R2 : x1 > 0, x2 ≥ 0}. Here, condition (b) is not satisfied, while

we have W = +(W+).14 However, we cannot guarantee W = +(W+) without condition

(b). For example, consider W = {x ∈ R3 : x1 > 0, x2 > 0, x3 ≥ 0} ∪ {x ∈ R3 : x1 >

0, x2 = x3 = 0} ∪ {x ∈ R3 : x2 > 0, x1 = x3 = 0}. Then W is a preference cone satisfying

condition (a) but not (b). We have W+ = {u ∈ R3 : u1 > 0, u2 > 0, u3 ≥ 0} and
+(W+) = {x ∈ R3 : x1 ≥ 0, x2 ≥ 0, x3 ≥ 0} \ {x ∈ R3 : x1 = x2 = 0, x3 ≥ 0}, which is

strictly larger than W . Lastly, consider the two preference cones Ws and Ww, associated

with the strong and weak partial orders, respectively, on Rm. As Ws = W s \ {0} and

Ww is open, they satisfy conditions (a) and (b), and we have seen that the relationship

W = +(W+) holds for them.

Theorem 2(ii) provides a necessary condition for Y = +(Y +). Again, this result justifies

our assumption that W is a convex cone satisfying W ∩ (−W ) = ∅, since without it the

relationship W = +(W+) cannot hold.

Remark 1. Dubra et al. (2004) take an arbitrary compact metric space S as the set of prizes.

They consider weak preferences % defined on the set of all Borel probability measures over S,

denoted by P(S), and assume that the potentially incomplete preference relation % satisfies

the standard independence and continuity axioms. They take the vector space generated by

P(S) as the outcome space and extend preferences to the outcome space by working with

the set of weak improvement directions, C (%) := {α(p− q) : α > 0 and p % q}. They have

the set of all continuous real maps on S (topologized by the sup-norm) as the utility space,

which is separable. They point out that the outcome space is equal to the topological dual

of the utility space, and they show that C (%) is a weak*-closed convex cone in the outcome

space. That is, they regard the outcome space as the dual of the utility space, whereas we

treat the utility space as the dual of the outcome space. Using the Hahn–Banach separation

13We use x = (x1, x2, . . .) ≫ 0 to mean xk > 0 for all k = 1, 2, . . ..
14See Aumann (1962, Sec. 7). Aumann (1962) considers X = X∗ = Rm, and in his Theorem D, he states

that W = +(W+) if and only if W is the intersection of its open supports. In our setting, the intersection
of the open supports of W is just the definition of +(W+). Hence, in our Theorem 2(i), we present more
primitive conditions on W to obtain W = +(W+).
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theorem, they prove an expected multi-utility representation theorem in the sense that

p % q if and only if

∫
S
vdp ≥

∫
S
vdq for all v ∈ V ,

for some subset V of the utility space. Note that the outcome and utility spaces in Dubra

et al. (2004) are more structured than those in this paper, and thus they obtain the multi-

utility representation theorem without any further assumptions. While both papers use

convex cones to describe preferences over outcomes, their continuity axiom is stronger than

ours, provided that we adopt the corresponding topology on the outcome space.15 Moreover,

the notions of utility representation by a set differ slightly in the two papers. In this paper,

W = +(W+) means that x ≻ y if and only if u(x) > u(y) for all u ∈ W+, while multi-utility

representation in Dubra et al. (2004) implies that p ≻ q if and only if
∫
S vdp ≥

∫
S vdq for all

v ∈ V , with strict inequality for some v ∈ V . Thus, our notion of utility representation is

slightly stronger for strict preferences; however, we impose no requirement that corresponds

to p ∼ q if and only if
∫
S vdp =

∫
S vdq for all v ∈ V , as we do not care about indifference.

When X is a reflexive Banach space,16 the elements of the second dual X∗∗ can be

identified by those of X, and thus we can switch the roles of X and X∗. That is, we can

think of X∗ as the outcome space and X as the utility space. For example, given a set of

possible states, we can consider a scenario where an outcome is a prize vector that specifies

a monetary reward for each state and a utility is a probability distribution over states, so

that the utility of an outcome is computed as the expected value of prizes with respect to

the probability distribution. If X is reflexive, we can analyze the opposite scenario where an

outcome is a probability distribution over states and a utility is a prize vector. Taking X∗

as the outcome space, we can use our results as follows. First, we can write down conditions

on X∗ and Z ⊆ X∗ that are analogous to those in Theorems 1 and 2 to obtain +Z ̸= ∅ and

Z = (+Z)+. Second, suppose that W = +(W+) holds in reflexive X. Since X is a normed

space, W+ satisfies W+ ∩ (−W+) = ∅ by Lemma 1(iii). Moreover, since W ̸= X, W+ is

nonempty. Then we can take W+ as a preference cone in X∗, and W can be regarded as

the set of utilities in X∗∗ representing W+. In other words, we can also switch the roles of

W and W+ in this case.

15The continuity axiom of Dubra et al. (2004) implies that the weak preference cone C is closed. Let
W = C \ (−C). To show W ∩ (−W ) = ∅, suppose to the contrary that there exists x ∈ W ∩ (−W ). Then
x ∈ W and x ∈ −W . Since W ⊆ C and C is closed, we have x ∈ C and x ∈ −C. This implies −x ∈ −C
and −x ∈ C. Then −x /∈ W , which contradicts x ∈ −W .

16See Sec. 4.5 of Rudin (1991) for the definition of reflexive spaces.
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3 Decision Making with Vector Outcomes

In this section, we study the decision maker’s optimal choices17 over alternatives. A decision-

making problem with vector outcomes is defined by a tuple (A,X, f,W ), where A is a

nonempty set, X is a real topological vector space, f is a function from A to X, and W is

a preference cone in X. As before, X denotes the outcome space, while W expresses the

decision maker’s preferences over outcomes that satisfy (A1)–(A6). The set A denotes the

set of alternatives, and the function f describes the relationship between alternatives and

outcomes. That is, when the decision maker chooses alternative a ∈ A, the outcome is given

by f(a) ∈ X. For any B ⊆ A, we define f(B) = {f(a) : a ∈ B}. For notational simplicity,

we will use D := (A,X, f) so that a decision-making problem can be written as (D,W ).

The decision-making problem where the decision maker has a utility u on X is written as

(D,u).

Let O(D,W ) be the set of optimal choices in the problem (D,W ), i.e.,

O(D,W ) = {a∗ ∈ A : @a ∈ A s.t. f(a)− f(a∗) ∈ W}.

Similarly, let O(D,u) be the set of optimal choices in the problem (D,u), i.e.,

O(D,u) = {a∗ ∈ A : @a ∈ A s.t. u(f(a)) > u(f(a∗))}.

O(D,W ) is the set of alternatives that lead to the maximal elements of f(A) with respect to

the partial order induced by W . In other words, f(O(D,W )) is the set of maximal elements

of f(A). Note that a utility can be interpreted to induce complete preferences on X,18 while

O(D,u) can be regarded as the set of maximizers of the real-valued function u ◦ f on A. In

the following theorem, we investigate the relationship between O(D,W ) and O(D,u). We

use the notation f(A)− (W ∪ {0}) to denote the set {x− y ∈ X : x ∈ f(A), y ∈ W ∪ {0}}.
That is, f(A) − (W ∪ {0}) is the extension of f(A) by adding all outcomes that are less

preferred to some outcome in f(A).

Theorem 3. Let (D,W ) be a decision-making problem with vector outcomes. Then∪
{O(D,u) : u ∈ W+} ⊆ O(D,W ). (5)

17In the multicriteria decision making literature, different terminologies such as Pareto optimal and efficient
solutions are used to refer to optimal choices (see Ehrgott, 2005, Table 2.4).

18Given a utility u on X, we can define a weak preference relation % on X by x % y if and only if
u(x) ≥ u(y). Then % is complete (i.e., for any x, y ∈ X, either x % y or y % x).

13



Suppose that f(A)− (W ∪ {0}) is convex19 and that int(f(A)− (W ∪ {0})) is nonempty.20

Then

O(D,W ) ⊆
∪

{O(D,u) : u ∈ (intW )+}. (6)

Proof. Let a∗ ∈ O(D,u) for some u ∈ W+. Suppose to the contrary that a∗ /∈ O(D,W ).

Then there exists a ∈ A such that f(a) − f(a∗) ∈ W . Since u ∈ W+, we have u(f(a) −
f(a∗)) > 0 and thus u(f(a)) > u(f(a∗)). This contradicts a∗ ∈ O(D,u).

Suppose that f(A)− (W ∪ {0}) is convex and that int(f(A)− (W ∪ {0})) is nonempty.

Choose any a∗ ∈ O(D,W ). Then f(a∗) is maximal in f(A) with respect to W . By Lemma

4.7(b) of Jahn (2011), f(a∗) is also maximal in f(A)− (W ∪{0}). Since W is a cone, f(a∗)

cannot be in the interior of f(A) − (W ∪ {0}). Since f(A) − (W ∪ {0}) is convex, so is

int(f(A)− (W ∪{0})). Then by the Hahn–Banach separation theorem, there exists u ∈ X∗

such that u(f(a∗)) > u(x) for all x ∈ int(f(A)− (W ∪{0})). We show that u ∈ (intW )+. If

intW = ∅, then (intW )+ = X∗, and we obtain u ∈ (intW )+. So suppose that intW ̸= ∅,

and choose any x ∈ intW . Since f(a∗) ∈ f(A), we have f(a∗) − x ∈ f(A) − (W ∪ {0}).
Since x is an interior point of W , f(a∗)−x is an interior point of f(A)− (W ∪{0}). Hence,
u(f(a∗)) > u(f(a∗) − x) = u(f(a∗)) − u(x), and so u(x) > 0. This implies u ∈ (intW )+.

We have u(f(a∗)) ≥ u(x) for all x ∈ f(A)− (W ∪{0}). Since f(A) ⊆ f(A)− (W ∪{0}), we
obtain a∗ ∈ O(D,u).

Theorem 3 provides a sufficient condition for optimal choices, as well as a necessary

one under additional assumptions. From Theorem 3, we can obtain a sufficient condition

for the existence of optimal choices. If A is a compact subset of a topological space, f is

continuous, and W+ is nonempty, then O(D,u) is nonempty for any u ∈ W+, and thus

O(D,W ) is nonempty. Combining the two inclusions in (5) and (6), we obtain∪
{O(D,u) : u ∈ W+} ⊆ O(D,W ) ⊆

∪
{O(D,u) : u ∈ (intW )+}.

Collecting all optimal choices of a decision maker with a utility representing W provides a

lower bound on the set of optimal choices in the decision-making problem (D,W ), while

collecting those of a decision maker with a utility representing intW offers an upper bound.

By Lemma 1(i), we have W+ ⊆ (intW )+, and thus it is clear that the upper bound is at

least as large as the lower bound. Typically, these two bounds will not differ much. In

19A sufficient condition for f(A) − (W ∪ {0}) to be convex is that A is a convex subset of a real vector
space and f is W -concave in the sense that f(αa + (1 − α)a′) − [αf(a) + (1 − α)f(a′)] ∈ W ∪ {0} for any
a, a′ ∈ A and α ∈ [0, 1].

20For any set B in a topological space, int(B) or intB denotes the topological interior of B. Obviously, if
f(A) or W has a nonempty interior, then int(f(A)− (W ∪{0})) is nonempty. However, it can be nonempty
even when both intf(A) and intW are empty.
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particular, when W is open, we have W = intW , and the two bounds will coincide. This

observation leads to the following corollary.

Corollary 1. Let (D,W ) be a decision-making problem with vector outcomes. Suppose that

W is open and that f(A)− (W ∪ {0}) is convex. Then

O(D,W ) =
∪

{O(D,u) : u ∈ W+}. (7)

When W is not open, we cannot guarantee the relationship in (7), as pointed out in

Shapley (1959). Aumann (1962, Theorem B) provides an alternative sufficient condition by

showing that the relationship in (7) holds if f(A) is a convex polyhedron (i.e., the convex

hull of finitely many points) in a Euclidean space (see also Arrow et al., 1953, Theorem 1,

where they focus on the Pareto order).

Theorem 3 and Corollary 1 are closely related to scalarization results in vector opti-

mization. Any element of f(O(D,u)) where u ∈ W+ is called a properly maximal element

of f(A) in the sense of linear scalarization in Boţ et al. (2009, Def. 2.4.12) and an almost

properly maximal element in Jahn (2011, Def. 5.23). Moreover, under further assumptions

on X and W , it is equivalent to a properly maximal element in other senses (see Boţ et

al., 2009, Props. 2.4.17 and 2.4.18). A weakly maximal element of f(A) with respect to

W is defined as a maximal element of f(A) with respect to the algebraic interior of W . If

intW ̸= ∅, the algebraic interior of W coincides with its topological interior, and the set of

weakly maximal elements of f(A) is given by f(O(D, intW )) (see Jahn, 2011, Lemma 1.32

and Def. 4.12). If, in addition, f(A) − (intW ∪ {0}) is convex, the set of weakly maximal

elements is equal to
∪
{f(O(D,u)) : u ∈ (intW )+} by Corollary 1. Thus, the lower bound

basically corresponds to properly maximal elements and the upper bound to weakly max-

imal elements. Theorem 3 can be interpreted as bounding the set of maximal elements by

the sets of properly and weakly maximal elements based on the idea of linear scalarization.

When Z and +Z are nonempty, +Z is a preference cone, as can be seen from Lemma 1(iii).

In this case, we can apply Theorem 3 and Corollary 1 to W = +Z to obtain the following

result.

Corollary 2. Let D = (A,X, f) be components of a decision-making problem with vector

outcomes. Suppose that Z ⊆ X∗ and its dual +Z ⊆ X are nonempty. Then∪
{O(D,u) : u ∈ Z} ⊆ O(D,+Z).

Suppose that f(A) − (+Z ∪ {0}) is convex and that int(f(A) − (+Z ∪ {0})) is nonempty.

Then

O(D,+Z) ⊆
∪

{O(D,u) : u ∈ (int+Z)+}.
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Suppose further that +Z is open and that Z = (+Z)+. Then∪
{O(D,u) : u ∈ Z} = O(D,+Z). (8)

The relationships in (7) and (8) can be interpreted as follows. Suppose that the decision

maker has preferences described by W . Then by considering all utilities representing W

and collecting all maximizers of these utilities, we can obtain the set of the decision maker’s

optimal choices. That is, in order to characterize the optimal choices of a decision maker

with incomplete preferences W , we can use complete preferences induced by utility u in

W+. Alternatively, suppose that the decision maker has utility u, about which there is

uncertainty. If the modeler knows only that u belongs to some set Z ⊆ X∗, she can

encompass all possible optimal choices by considering an imaginary decision maker who has

incomplete preferences +Z. On the other hand, if the decision maker is unsure about his

own utility and is ambiguity averse in the sense that he chooses alternative a over status quo

b only when f(a) is better than f(b) with respect to all utilities in Z, then his choice can be

described as if he has incomplete preferences +Z. We can think of another interpretation

where there are multiple agents having utilities and the set of their utilities is given by Z.

Suppose that they make a collective choice using the unanimity rule, that is, they choose

alternative a over status quo b only when everyone prefers f(a) to f(b). Then the possible

resulting outcomes in this scenario can be obtained by considering an “aggregate” agent

who has incomplete preferences +Z.

4 Games with Vector Outcomes

In this section, we study games with vector outcomes, building on the results derived in the

previous section. A game with vector outcomes is defined by a tuple (I, (Ai), (Xi), (fi), (Wi)),

where I is a finite set, and for each i ∈ I, Ai is a nonempty set, Xi is a real topological

vector space, fi is a function from A :=
∏

i∈I Ai to Xi, and Wi is a preference cone in

Xi. The set I denotes the set of players. For each player i ∈ I, Ai is the set of actions

available to player i. We denote an action of player i by ai ∈ Ai and an action profile by

a = (a1, . . . , an) ∈ A. We sometimes write a = (ai, a−i), where a−i ∈ A−i :=
∏

j∈I\{i}Aj .

An action profile determines an outcome for each player. As in games with scalar payoffs,

we allow that outcomes (or payoffs) differ across players. For each player i ∈ I, Xi is the

outcome space for player i, and fi is the function that assigns an outcome for player i to

each action profile. That is, when an action profile a is chosen, player i receives outcome

fi(a) ∈ Xi. For each player i ∈ I, Wi ⊆ Xi is the preference cone that describes player i’s

strict preferences over outcomes. For simplicity, we sometimes denote a game by (G,W ),

where G = (I, (Ai), (Xi), (fi)) and W = (Wi).
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We define an equilibrium of a game with vector outcomes as an action profile from which

no player has a profitable unilateral deviation.21 Let E(G,W ) be the set of equilibria of

the game (G,W ), i.e.,

E(G,W ) = {a∗ ∈ A : @i ∈ I and ai ∈ Ai s.t. fi(ai, a
∗
−i)− fi(a

∗) ∈ Wi}.

A game where each player i has a utility ui ∈ X∗
i is denoted by (I, (Ai), (Xi), (fi), (ui)), or

simply by (G, u) where u = (ui). The game (G, u) can be considered as a standard strategic

game (I, (Ai), (vi)), where each player i has a scalar payoff function vi = ui ◦ fi defined on

the set of action profiles. Let E(G, u) be the set of (Nash) equilibria of the game (G, u),

i.e.,

E(G, u) = {a∗ ∈ A : @i ∈ I and ai ∈ Ai s.t. ui(fi(ai, a
∗
−i)) > ui(fi(a

∗))}.

In the following theorem, we investigate the relationship between E(G,W ) and E(G, u).

We use the notation Fi(a−i) = {fi(ai, a−i) : ai ∈ Ai} for any i ∈ I and a−i ∈ A−i.

Theorem 4. Let (G,W ) be a game with vector outcomes. Then∪
{E(G, u) : ui ∈ W+

i ∀i ∈ I} ⊆ E(G,W ).

Suppose, for any i ∈ I and a−i ∈ A−i, that Fi(a−i) − (Wi ∪ {0}) is convex22 and that

int(Fi(a−i)− (Wi ∪ {0})) is nonempty. Then

E(G,W ) ⊆
∪

{E(G, u) : ui ∈ (intWi)
+ ∀i ∈ I}.

Proof. Let a∗ ∈ E(G, u) for some u ∈
∏

i∈I W
+
i . Suppose to the contrary that a∗ /∈

E(G,W ). Then there exists i ∈ I and ai ∈ Ai such that fi(ai, a
∗
−i) − fi(a

∗) ∈ Wi. Since

ui ∈ W+
i , we have ui(fi(ai, a

∗
−i) − fi(a

∗)) > 0 and thus ui(fi(ai, a
∗
−i)) > ui(fi(a

∗)). This

contradicts a∗ ∈ E(G, u).

Suppose, for any i ∈ I and a−i ∈ A−i, that Fi(a−i) − (Wi ∪ {0}) is convex and that

int(Fi(a−i)− (Wi ∪ {0})) is nonempty. Choose any a∗ ∈ E(G,W ). For every i ∈ I, we can

obtain ui ∈ (intWi)
+ such that ui(fi(a

∗)) ≥ ui(x) for all x ∈ Fi(a
∗
−i), following the proof of

Theorem 3. Hence, there exists u ∈
∏

i∈I(intWi)
+ such that a∗ ∈ E(G, u).

Theorem 4 extends Theorem 3 to game situations, offering a lower and upper bound

21This notion of equilibrium is a straightforward extension of the concept of Nash equilibrium to the
context of games with vector payoffs, and so Bade (2005) calls it a Nash equilibrium. It is also called a
Pareto equilibrium (Borm et al., 1988) and a Shapley equilibrium (Hamel and Löhne, 2018) in the literature.

22As mentioned in footnote 19, a sufficient condition for Fi(a−i)− (Wi ∪ {0}) to be convex is that Ai is a
convex subset of a real vector space and fi is Wi-concave in ai for any a−i. This sufficient condition is often
assumed in the literature. See, for example, Bade (2005, Theorem 2) and Mármol et al. (2017, Theorem
2.5).
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for the set of equilibria. If we adopt the terminologies used in the vector optimization

literature, any Nash equilibrium of (G, u) where ui ∈ W+
i for every i may be called a

proper equilibrium of (G,W ) and any Nash equilibrium of (G, u) where ui ∈ (intWi)
+ for

every i a weak equilibrium of (G,W ). Theorem 4 also generalizes Theorem 2 of Bade (2005),

where she considers Xi = X∗
i = Rmi and Wi = {x ∈ Xi : x ≥ 0} \ {0} for every i. In this

scenario, we have W+
i = {u ∈ X∗

i : u ≫ 0} and (intWi)
+ = {u ∈ X∗

i : u ≥ 0} \ {0}.
The following corollary is an analogue of Corollary 1 in the context of games.

Corollary 3. Let (G,W ) be a game with vector outcomes. Suppose, for any i ∈ I and

a−i ∈ A−i, that Wi is open and that Fi(a−i)− (Wi ∪ {0}) is convex. Then

E(G,W ) =
∪

{E(G, u) : ui ∈ W+
i ∀i ∈ I}. (9)

Corollary 3 generalizes Shapley’s (1959) characterization of weak equilibria as well as

that of Mármol et al. (2017, Theorem 2.5). From this result, we can see that the relationship

Ws = (Ww)
+ drives these characterizations. While Corollary 3 does not cover the case of

strong equilibria, Aumann (1962, Theorem C) generalizes Shapley’s (1959) characterization

of strong equilibria. As discussed after Corollary 1, the relationship in (9) holds if Fi(a−i)

is a convex polyhedron in a finite-dimensional vector space for all i and a−i. On the other

hand, Theorem 3 of Bade (2005) shows that E(G,W ) =
∪
{E(G, u) : ui ∈ (intWi)

+ ∀i ∈ I}
if every component of each fi is strictly concave in ai in the setting considered in Theorem

2 of Bade (2005).

We can write down an analogue of Corollary 2 as follows.

Corollary 4. Let G = (I, (Ai), (Xi), (fi)) be components of a game with vector outcomes.

Suppose, for any i ∈ I, that Zi ⊆ X∗
i and its dual +Zi ⊆ Xi are nonempty. Then∪

{E(G, u) : ui ∈ Zi ∀i ∈ I} ⊆ E(G, (+Zi)).

Suppose, for any i ∈ I and a−i ∈ A−i, that Fi(a−i) − (+Zi ∪ {0}) is convex and that

int(Fi(a−i)− (+Zi ∪ {0})) is nonempty. Then

E(G, (+Zi)) ⊆
∪

{E(G, u) : ui ∈ (int+Zi)
+ ∀i ∈ I}.

Suppose further, for any i ∈ I, that +Zi is open and that Zi = (+Zi)
+. Then∪

{E(G, u) : ui ∈ Zi ∀i ∈ I} = E(G, (+Zi)). (10)

The relationships in (9) and (10) can be interpreted as before. We can describe equilibria

of a game with vector outcomes using Nash equilibria of scalarized games. If players have
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utilities, but they or the modeler is uncertain about their utilities, a conservative approach

would be to consider players with incomplete preferences. Theorem 3.3 of Mármol et al.

(2017) establishes the relationship in (10), focusing on the case where each Zi is a polyhedral

cone minus the origin in a Euclidean space.

An agent with incomplete preferences may not be able to compare many outcomes, and

this often leads to a huge set of equilibria of a game with vector outcomes (see Bade, 2005).

This large multiplicity of equilibria can also be seen from the characterization in Theorem 4.

Typically, the dual of a preference cone contains infinitely many (normalized) utilities when

it is nonempty. Hence, in order to obtain the lower or upper bound for the equilibrium

set in Theorem 4, we need to find the Nash equilibria of infinitely many scalarized games

(see Corley, 1985, Sec. 4, for a related remark). Given the large multiplicity of equilibria,

it is important to predict which equilibrium players will actually play, or prescribe which

one they should play. Based on the lower bound result in Theorem 4, we can take the

following approach to address this issue. Suppose that a utility ui representing player i’s

preference cone Wi is selected for every i. Then a Nash equilibrium of the scalarized game

(G, u) gives an equilibrium of the game (G,W ) with vector outcomes, while it has much

smaller multiplicity. In particular, it is well-known that a generic finite strategic game

with scalar payoffs has a finite number of mixed strategy Nash equilibria (see, for example,

Wilson, 1971).23 Hence, by focusing on a particular scalarization, we can narrow down the

equilibrium set significantly.

The remaining question is which scalarization players will or should select. Although

we do not aim to provide a rigorous theory on it in this paper, it can be argued that

players are more likely to select a scalarization that renders the scalarized game natural or

desirable properties (similarly to a focal point in Schelling, 1960). For example, suppose

that the game (G,W ) with vector outcomes is a two-player zero-sum game where I = {1, 2},
X1 = X2 = Rm, W1 = W2, and f1 = −f2. Given that the game is zero-sum, it is natural

that the players select a scalarization that makes the scalarized game zero-sum as well,

which is achieved when they choose u1 = u2. Moreover, zero-sum games with scalar payoffs

are known to possess many desirable properties such as interchangeability and best security

levels of Nash equilibria, while such properties fail to hold in zero-sum games with vector

payoffs (see Corley, 1985). So it can be argued that a symmetric scalarization (i.e., u1 = u2)

should be selected for zero-sum games with vector outcomes. We illustrate this approach

with the following example.

Example 1 (Example 3.1 of Corley, 1985). Consider a two-player zero-sum game with

23As mentioned in the Introduction, we can deal with mixed strategies over a finite number of pure
strategies and mixed strategy equilibria in our framework by interpreting Ai as the set of player i’s mixed
strategies and fi(a) as the expected vector outcome given the mixed strategy profile a.
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vector outcomes where each player has two pure strategies, X1 = X2 = R2, W1 = W2 =

{x ∈ R2 : x ≥ 0} \ {0}, and f1 on pure strategy profiles is given by

f1 =

[
(0, 0) (2,−1)

(1,−2) (0, 0)

]
.

Let us denote player 1’s mixed strategy by (p, 1− p) where 0 ≤ p ≤ 1 and player 2’s mixed

strategy by (q, 1− q) where 0 ≤ q ≤ 1. Corley (1985) shows that the set of equilibria of this

game is given by

{(p, q) : p ∈ [0, 1/3) ∪ (2/3, 1], q ∈ [0, 1/3) ∪ (2/3, 1]}

∪{(p, q) : 1/3 < p < 2/3, q = 0} ∪ {(p, q) : p = 1, 1/3 < q < 2/3}.

The set of equilibria obtained from symmetric scalarizations is given by

{(p, q) : p ∈ [0, 1/3) ∪ (2/3, 1], q = 1− p} ∪ {(p, q) : p = q = 1},

which is a lot smaller than the set of equilibria of the original game.

Even when the game (G,W ) with vector outcomes is non-zero-sum, there may exist

utilities (ui) that make the scalarized game (G, u) a zero-sum game. If players regard

the properties of zero-sum games with scalar payoffs as important, they may coordinate

on a scalarization that induces a zero-sum game. Consider a game (G,W ) with vector

outcomes where there are two players and each player i has ki pure strategies, Rmi as his

outcome space, and the Pareto order as his preferences. Then utilities (u1, u2) inducing a

zero-sum game with scalar payoffs can be characterized by a strictly positive solution to

a homogeneous system of k1 × k2 linear equations with m1 + m2 unknowns. Note that

there may not exist such utilities. Even when scalarization cannot produce a zero-sum

game, players can look for a scalarization that induces a game where each player’s maximin

strategy is his Nash equilibrium strategy. Pruzhansky (2011, Prop. 1) presents a condition

for a game with scalar payoffs to have such a property, which is utilized in the next example.

Example 2. Consider a two-player game with vector outcomes where each player has two

pure strategies, X1 = X2 = R2, W1 = W2 = {x ∈ R2 : x ≥ 0} \ {0}, and f1 and f2 on pure

strategy profiles are given by

f1 =

[
(1, 0) (−2, 1)

(2,−1) (0, 1)

]
and f2 =

[
(1,−1) (1, 0)

(0, 3) (0, 1)

]
.

Let us denote player 1’s mixed strategy by (p, 1− p) where 0 ≤ p ≤ 1 and player 2’s mixed
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strategy by (q, 1 − q) where 0 ≤ q ≤ 1. Based on the characterization of Corley (1985,

Theorem 2.1), we can obtain the set of equilibria of this game as follows:

{(p, q) : p = 2/3, 0 < q < 1} ∪ {(p, q) : 0 ≤ p ≤ 2/3, q = 1}.

It can be checked that the scalarized game (G, u) is zero-sum if and only if u1 = u2 = 0;

thus, there does not exist any utility pair (u1, u2) ≫ 0 that makes (G, u) zero-sum. Using

Proposition 1 of Pruzhansky (2011), we can show that the scalarized game (G, u) has a

Nash equilibrium in which both players choose their maximin strategies if and only if u1

is a positive multiple of (1, 2) and u2 is a positive multiple of (3, 1). With such utilities

(u1, u2), (p, q) = (2/3, 2/3) is the unique Nash equilibrium of (G, u).

5 Conclusion

In this paper, we developed a general framework to study decision making and games with

vector outcomes and presented some fundamental results. We started from an outcome

space that is a real topological vector space. Our assumptions about preferences over

outcomes allowed us to use a preference cone—defined as a nonempty convex cone satisfying

a continuity axiom—to describe preferences. We defined a notion of utility representation

and introduced a duality between outcomes and utilities. We presented conditions under

which a preference cone admits a utility representation and is the dual of a set of utilities. We

provided a lower and upper bound on the set of optimal choices in a decision-making problem

with vector outcomes by using optimal choices in related decision-making problems where

payoffs are scalarized by utilities representing the decision maker’s preferences. Similarly,

we characterized the set of equilibria of a game with vector outcomes by Nash equilibria of

related games where payoffs are scalarized by utilities representing the players’ preferences.

In many real-world scenarios, outcomes are vectors and agents have incomplete pref-

erences over outcomes. Our framework can be used to model and analyze such scenarios.

While most existing work on games with vector payoffs assumes that an outcome space

is finite-dimensional Euclidean space and that preferences are given by the Pareto order,

our framework allows infinite-dimensional outcome spaces and preferences described by a

preference cone, and thus it has broader applicability. As games with vector payoffs have

not been much explored yet in the existing literature, we regard our work as one of early

studies on this topic, and there are many questions that remain to be investigated in future

work. Our focus in this paper is on noncooperative simultaneous-move games with complete

information, but other game models such as sequential-move games, games with incomplete

information, and cooperative games can be examined with vector outcomes.

21



References

[1] Arrow, K. J., Barankin, E. W., and Blackwell, D. (1953), “Admissible Points of Convex

Sets,” Contributions to the Theory of Games 2, 87–91.

[2] Aumann, R. J. (1962), “Utility Theory without the Completeness Axiom,” Economet-

rica 30, 445–462.

[3] Bade, S. (2005), “Nash Equilibrium in Games with Incomplete Preferences,” Economic

Theory 26, 309–332.

[4] Blackwell, D. (1956), “An Analog of the Minimax Theorem for Vector Payoffs,” Pacific

Journal of Mathematics 6, 1–8.

[5] Borm, P. E. M., Tijs, S. H., and Van Den Aarssen, J. C. M. (1988), “Pareto Equilibria

in Multiobjective Games,” Methods of Operations Research 60, 302–312.
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