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Abstract

We study the relationship between unanimity and local incentive constraints

of deterministic social choice functions (or voting mechanisms) . We consider

a standard Bayesian environment where agents have private and strict prefer-

ence orderings on a finite set of alternatives. We show that with independent

and generic priors, locally ordinal Bayesian incentive compatibility of a social

choice function combined with unanimity implies the tops-only property. Also,

assuming unanimity invokes the sufficiency of local incentive constraints for

full incentive constraints. Furthermore, unanimity helps our results hold in

a broad class of domains — a few of its constituents being the unrestricted

domain, the single-peaked domain, the single-dipped domain and some other

connected domains.
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1 Introduction

Incentive compatibility of a social choice function (or a voting mechanism) has been

one of the foremost concerns in mechanism design. Gibbard (1973), Satterthwaite

(1975) and Moulin (1980) are some seminal papers that pertain to this matter. How-

ever, when the number of alternatives or the set of admissible preferences is large,

it becomes onerous and costly to verify that a social choice function (scf) satisfies
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every incentive constraint. Therefore, sufficiency of local constraints — on small

distortions in reporting preferences — for full incentive compatibility has attracted

substantial attention from mechanism design literature: some recent papers include

Carroll (2012), Sato (2013), and Mishra (2016).

Meanwhile, unanimity of an scf is a mild form of efficiency1 — whenever every

agent agrees on an alternative as the best, the scf should choose it. Hence, it is quite

natural to require an scf to be unanimous. In this paper, we argue that requiring an scf

to be unanimous significantly eases the problem of designing an incentive compatible

scf in three aspects. First, on the range of scfs, local incentive compatibility of an scf

combined with unanimity invokes a strong and useful property called tops-onlyness ;

it exclusively responds to changes in the tops of preference profiles. Therefore, it is

sufficient to consider scfs having this property as candidates. Secondly, in terms of

incentive constraints, unanimity helps inducing local incentive constraints to be suffi-

cient to imply full incentive compatibility. Lastly, regarding the domain of admissible

preferences, such sufficiency holds in a broad class of domains under unanimity.

Our framework is built on a standard Bayesian environment where individuals

have private and strict preference orderings on a finite set of alternatives. We con-

sider profiles of independent and generic priors introduced in Majumdar and Sen

(2004) and studied in Mishra (2016)2. Also, we restrict our attention to deterministic

ordinal scfs that only account for the ordinal preferences of individuals. We consider

two main concepts of incentive compatibility for these scfs: dominant strategy in-

centive compatibility (DSIC) and ordinal Bayesian incentive compatibility (OBIC)

introduced by d’Aspremont and Peleg (1988). An scf is OBIC if for any agent, his

interim outcome probability vector from truth-telling first-order stochastic-dominates

any vector obtained from lying. Similarly to Mishra (2016), we focus on OBIC with

respect to generic priors (G-OBIC). Local incentive constraints are respectively weak-

ened versions of each full incentive compatibility, those that merely pertain to local

distortions: local dominant strategy incentive compatibility (LDSIC)3 and generic-

local ordinal Bayesian incentive compatibility (G-LOBIC).

1Holströmes and Myerson (1983) classify the concepts of Pareto efficiency depending on the stage
of information regarding the types of agents, among which ex-post Pareto efficiency is the weakest.
Azrieli and Kim (2014) explain that any Ex-post Pareto efficient scf is unanimous.

2To be specific, Majumdar and Sen (2004) prove that these priors are generic in a topological
sense under the unrestricted domain. Mishra (2016) explains that the identical proof works in
restricted domains.

3LDSIC corresponds to AM-proof in Sato (2013).
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For the domain of preferences, we assume that the set of admissible preferences

is connected, following the notions in Sato (2013): from any preference ordering to

another, there is a path consisting of adjacent orderings. That is, any large distortion

in preferences can be decomposed into a sequence of local(or small) distortions. Sato

(2013) also defines an important subclass of connected domains, connected domains

without restoration, where a certain kind of decomposition is possible. For any pair

of preferences, there exists a path in which any adjacent distortion is not reversed(or

restored) later in the sequence. Many well-known and widely studied domains such as

the unrestricted domain and the full single-peaked domain lie in this class of domains.

However, we mainly consider an even larger class of domains, weakly connected do-

mains without restoration4. Whereas the former class necessitates the existence of a

single path where the ranking between any two alternatives is not restored, our main

domains merely demand the existence of one path for each pair of alternatives where

the ranking between them is not restored. Note that the gap between two classes of

domains can be larger as number of alternatives grows.

In our main results, we study the implications unanimity of scfs have on local in-

centive constraints. Our first main result shows that the search for G-LOBIC scfs can

be restricted to tops-only ones. Tops-onlyness is desirable not only for a mechanism

designer (or a social planner) since it saves costs in collecting and processing data

from agents, but also for agents who reveal their preferences in terms of privacy. Our

result is in line with the literature on tops-onlyness — such as Weymark (2008) and

Chatterji and Sen (2011) — which shows that DSIC with unanimity implies tops-

onlyness on several domains. We generalize this result by weakening the incentive

constraint to G-LOBIC and extending domains.

Next, we study the sufficiency of local incentive constraints. Sato (2013) shows

that weakly connected domains without restoration are necessary but not sufficient

for the equivalence between LDSIC and DSIC. However, our second main result is

that assuming unanimity not only restores the equivalence between LDSIC and DSIC

but also invokes the equivalence of G-LOBIC and G-OBIC. While the former equiva-

lence has been discussed in the literature, we are the first to our knowledge to study

the equivalence of Bayesian incentive constraints. This is especially relevant when

4To be clear, Sato (2013) introduces this domain as a necessary, yet not a sufficient domain for
the equivalence between LDSIC and DSIC. Since this domain is sufficient for our main results, we
name it.
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a mechanism designer considers DSIC to be demanding. For example, DSIC and

unanimous scfs are inevitably dictatorial on the unrestricted domain, leaving OBIC

scfs as natural substitutes. We also show that connected domains without restoration

are sufficient but not necessary for the equivalence between G-LOBIC and G-OBIC

without unanimity, which highlights the importance of unanimity.

Finally, we present the theoretical implication of our first and second result.

Mishra (2016) — work most related to ours— studies the conditions for the equiv-

alence of G-LOBIC and DSIC in restricted domains. We strengthen his results by

generalizing the sufficient domain and relaxing the restriction on scfs.

The rest of the paper is organized as follows. We present a detailed framework in

Section 2. In Section 3, we demonstrate our main results. All of the proofs are in the

appendix.

2 The Model

2.1 Framework

Consider a standard Bayesian environment with private types5. The set of agents is

N = {1, 2, ..., n} and the set of alternatives is A with m ≡ |A| ≥ 3. Let P denote the

set of all strict linear orders over A. Then P is the unrestricted domain and a proper

set D ⊂ P is a restricted domain. Each agent i ∈ N has a private preference ordering

(or a type) Pi ∈ D. For any preference ordering P ∈ D and any pair of alternatives

{a, b} ∈ A, aP b if and only if a is strictly preferred to b by P .

A deterministic and ordinal scf is a mapping, f : Dn → A. We focus on scfs

that choose an alternative whenever it is agreed by all agents as the best alternative;

unanimous scfs. For any preference ordering P ∈ D and any integer k ∈ K ≡
{1, ...,m}, let P (k) denote the kth-ranked alternative for P .

Definition 1. An scf f is unanimous if for any P ∈ Dn and a ∈ A, f(P ) = a

whenever a = Pi(1) for every agent i ∈ N .

We assume that each agent independently draws his preference using a probability

distribution µi : D → [0, 1], which is common knowledge for every agent. For any

Q ⊆ Dn−1, agent i’s belief of others having a preference profile in Q is µ(Q) =∑
P−i∈Q

×
j 6=i

µj(Pj). We mainly consider the following profile of priors.

5We borrow several key concepts from Mishra (2016).
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Definition 2 (Majumdar and Sen 2004). A profile of priors {µi}i∈N is generic if for

every Q,R ⊆ Dn−1 we have [µ(Q) = µ(R)]⇒ [Q = R].

2.2 Incentive Compatibility and Connected Domains without Restora-
tion

We now define several IC constraints: from the most stringent one, DSIC.

Definition 3. An scf is dominant strategy incentive compatible (DSIC) if for

every i ∈ N , every Pi ∈ D and every P−i ∈ Dn−1, there exists no P ′i ∈ D such that

f(P ′i ,P−i)Pi f(Pi,P−i).

A weaker concept of incentive compatibility is LDSIC. We define some necessary

concepts. For any two types P, P ′ ∈ D, we say that P ′ is an (a, b)-swap of P if

for some a, b ∈ A and k ∈ K, P (k) = P ′(k + 1) = a, P (k + 1) = P ′(k) = b and

P ′(j) = P (j) for all j ∈ K \ {k, k + 1}. Also, a pair of types P, P ′ ∈ D is adjacent

if P ′ is an (a, b)-swap of P for some {a, b} ⊂ A and denote the adjacent alternatives

by A(P, P ′) = {a, b}.

Definition 4 (Mishra 2016). An scf is locally dominant strategy incentive com-

patible (LDSIC) if for every i ∈ N , every Pi ∈ D and every P−i ∈ Dn−1, there

exists no adjacent type P ′i ∈ D to Pi such that f(P ′i ,P−i)Pi f(Pi,P−i).

Denote the union of a and the set of alternatives preferred to alternative a to

type Pi as B(a, Pi) = {a′ ∈ A : a′ = a or a′Pia}. Also, for each agent i ∈ N , let

πf
i (a, Pi) ≡

∑
P−i∈Dn−1:f(Pi,P−i)=a

µ(P−i). Now we define the ordinal notion of Bayesian

incentive compatibility.

Definition 5 (d’Aspremont and Peleg 1988). An scf f is ordinally Bayesian in-

centive compatible (OBIC) with respect to {µi}i∈N if for all i ∈ N , Pi, P
′
i ∈ D

and all a ∈ A, we have

πf
i (B(a, Pi), Pi) ≥ πf

i (B(a, Pi), P
′
i ).

6

f is G-OBIC if it is OBIC with respect to a profile of generic priors µ.

6With some abuse of notation, let πf
i (B(a, Pi), P

′
i ) denote the sum of probabilities of pref-

erence profiles such that f(P ) ∈ B(a, Pi) when reporting P ′i . That is, πf
i (B(a, Pi), P

′
i ) ≡∑

P−i∈Dn−1:f(P ′i ,P−i)∈B(a,Pi)

×
j 6=i

µj(Pj)
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As DSIC is weakened to LDSIC, OBIC can be weakened in the same spirit.

Definition 6 (Mishra 2016). An scf f is locally ordinally Bayesian incentive

compatible (LOBIC) with respect to {µi}i∈N if for all i ∈ N , for all a ∈ A, and

for all pair of adjacent types Pi, P
′
i ∈ D we have

πf
i (B(a, Pi), Pi) ≥ πf

i (B(a, Pi), P
′
i ). (1)

f is G-LOBIC if it is LOBIC with respect to a profile of generic priors {µi}i∈N .

Next we define some concepts on the domain of preferences. Any pair of types

P, P ′ ∈ D is connected if there exists a sequence of types (P = P 0, P 1, ..., P h, P h+1 =

P ′) in D such that for every l ∈ {0, 1...., h}, P l and P l+1 are adjacent. For each pair

{a, b} ⊂ A, a sequence in D is with {a, b}-restoration if for some distinct l, l′ ∈
{0, 1, ..., h}, A(P l, P l+1) = A(P l′ , P l′+1) = {a, b} and without {a, b}-restoration

if there exist no such swaps. A sequence is without restoration if it is without

{a, b}-restoration for any {a, b} ⊂ A.

We first define a domain in which every pair of preference orderings are connected

without restoration.

Definition 7 (Sato 2013). A domain D ⊆ P is connected without restoration if

any pair of types P, P ′ ∈ D is connected without restoration.

Mishra (2016) discusses several examples of connected domains without restora-

tion such as the unrestricted domain, the single-peaked domain, the single-dipped

domain, and some single-crossing domains. However, we consider an even broader

class of domains: domains that are weakly connected without restoration.

Definition 8. A domain D ⊆ P is weakly connected without restoration if for

each {a, b} ⊂ A, any pair of types P, P ′ ∈ D is connected without {a, b}-restoration.

3 Results

3.1 Tops-Onlyness

An scf is tops-only if it only takes into account the top alternative of each agent.

Definition 9. An scf f is tops-only if for any P ,P ′ ∈ Dn, f(P ) = f(P ′) whenever

Pi(1) = P ′i (1) for all i ∈ N .

6



Our first main result shows that tops-onlyness is necessary for G-LOBIC scfs under

unanimity.

Theorem 1. Let D ⊆ P be weakly connected without restoration. Then a unani-

mous and G-LOBIC scf f : Dn → A is tops-only.

3.2 Local Domains and Dominant Strategy Incentive Compatibility

Mishra (2016) calls a domain local if LDSIC is equivalent to DSIC in it. Sato (2013)

shows that connected domains without restoration are local. We show in the follow-

ing proposition that the equivalence of G-LOBIC and G-OBIC also holds in these

domains.

Proposition 1. Let f : Dn → A be an scf where D is connected without restoration.

Then f is G-LOBIC if and only if it is G-OBIC.

While the equivalence of both DSIC and OBIC holds in connected domains with-

out restoration, it can be shown that there exist scfs that are LDSIC but not DSIC

nor OBIC in weakly connected domains without restoration7. However, the following

theorem shows that under unanimity, these equivalences are restored.

Theorem 2. Let f : Dn → A be a unanimous scf where D is weakly connected

without restoration. Then f is G-LOBIC(LDSIC) if and only if it is G-OBIC(DSIC,

respectively).

3.3 Sufficiency of Local Incentive Constraints

Now, using the results from above, we study the relationship between G-LOBIC and

DSIC. Mishra (2016) investigates two weak versions of Maskin monotonicity in the

context of this relationship.

Definition 10 (Mishra 2016). An scf f satisfies elementary monotonicity if for

every i ∈ N , every P−i ∈ Dn−1 and every Pi, P
′
i ∈ D such that P ′i is an (a, b)-swap of

Pi for some a, b ∈ A and P (Pi,P−i) = b, we have f(P ′i ,P−i) = b.

He first shows that G-LOBIC combined with elementary monotonicity implies

DSIC in local domains. Then he further relaxes monotonicity to hold only in a

restricted set of preference profiles. For a domain D ⊂ P , a profile of preferences

7Example 3.2 in Sato (2013) serves this purpose.
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P ∈ Dn is a top-2 profile if for every i, j ∈ N , Pi(k) = Pj(k) for all k > 2. Let

D2(2) be the set of all top-2 profiles in D.

Definition 11 (Mishra 2016). An scf f : Dn → A satisfies weak elementary

monotonicity if f restricted to Dn(2) satisfies elementary monotonicity.

Similarly to our spirit, Mishra (2016) proves that under unanimity, elementary

monotonicity can be replaced by weak elementary monotonicity for the sufficiency

of G-LOBIC for DSIC in the single-peaked domain. In connected domains without

restoration, tops-onlyness is additionally necessary for the sufficiency. However, the

following lemma shows that an intermediate step (for the sufficiency of G-LOBIC for

LDSIC) works without tops-only property even in weakly connected domains without

restoration.

Lemma 1. Let f : Dn → A be a unanimous scf where D is weakly connected without

restoration. Then f is LDSIC if and only if it satisfies G-LOBIC and weak elementary

monotonicity.

Combining Theorem 2 and Lemma 1 leads to our last theorem.

Theorem 3. Let f : Dn → A be a unanimous scf where D is weakly connected

without restoration. Then f is DSIC if and only if it satisfies G-LOBIC and weak

elementary monotonicity.

Theorem 3 is a twofold strengthening of Mishra (2016)’s results. First, whereas

Mishra (2016) presents the sufficient conditions contingent on the types of domains

— single-peaked or connected without restoration —, we present an inclusive result.

That is, we show that tops-onlyness required in Mishra (2016)’s result is redundant.

In fact, this redundancy follows from Theorem 1. Secondly, we extend the domain.

Showing the equivalence of LDSIC with DSIC is a crucial step in the proof of Theorem

3. While Mishra (2016) relies on the observation that connected domains without

restoration are local, we use Theorem 2 for this step. Recall that the class of weakly

connected domains without restoration is lager than the class of local domains in

Mishra (2016).

Appendix

Proof of Theorem 1. Suppose for the sake of contradiction that f is unanimous

and G-LOBIC but not tops-only. Then there exist an agent(say agent 1), P−1 ∈ Dn−1

8



and two types P1, P̄1 ∈ D such that a∗ ≡ P1(1) = P̄1(1) and f(P̄1,P−1) 6= f(P1,P−1).
8

We first present some concepts and lemmas necessary for the proof of Lemma 4.

Definition 12 (Mishra 2016). An scf f satisfies swap monotonicity (SM) if for

every i ∈ N and Pi, P
′
i ∈ D such that A(Pi, P

′
i ) = {a, b} ⊂ A, we have for every

P−i ∈ Dn−1 that f(P ′i ,P−i) = f(Pi,P−i) if f(Pi,P−i) /∈ {a, b} and f(P ′i ,P−i) ∈ {a, b}
if f(Pi,P−i) ∈ {a, b}.

Lemma 2 (Mishra 2016). A G-LOBIC scf satisfies SM.

Lemma 3. Let f : Dn → A be an scf where D is a weakly connected without

restoration. Then if it satisfies swap monotonicity, it has the following property. For

any i ∈ N , Pi ∈ D, P−i ∈ Dn−1 and {a, b} ⊂ A, if f(Pi,P−i) 6= f(P ′i ,P−i) where P ′i

is an (a, b)-swap of Pi, then f(Pi,P
′
−i) = f(Pi,P−i) and f(P ′i ,P

′
−i) = f(P ′i ,P−i) for

any P ′−i ∈ Dn−1 such that for every j ∈ N \ {i}, aP ′j b if and only if aPj b.

Proof. WLOG, consider agent 1. By SM, {f(P1,P−1), f(P ′1,P−1)} = {a, b}. Assume

without loss of generality that f(P1,P−1) = a and f(P ′1,P−1) = b and that aP2 b.

Let P ′2 ∈ D be a type of agent 2 such that aP ′2 b. Then there exists a path from

P2 to P ′2 (P2 = P 0
2 , P

1
2 , ..., P

h
2 , P

h+1
2 = P ′2) in D that is without {a, b}-restoration.

For simplicity, for any l ∈ {0, ..., h + 1}, let f̄(P l
2) ≡ f(P1, P

l
2,P−{1,2}) and f̄ ′(P l

2) ≡
f(P ′1, P

l
2,P−{1,2}).

We argue that ∀l ∈ {0, ..., h}, [f̄(P l
2) = a and f̄ ′(P l

2) = b] ⇒ [f̄(P l+1
2 ) = a and

f̄ ′(P l+1
2 ) = b]. Since the path is without {a, b}-restoration, A(P l

2, P
l+1
2 ) 6= {a, b}. This

leaves two possible cases: A(P l
2, P

l+1
2 ) ∩ {a, b} = ∅ or A(P l

2, P
l+1
2 ) ∩ {a, b} 6= ∅. If it

is the former case, then by SM, f̄(P l+1
2 ) = a and f̄ ′(P l+1

2 ) = b. For the latter case,

assume without loss of generality that A(P l
2, P

l+1
2 ) = {a, c} where c ∈ A and c 6= b.

Then, f̄(P l+1
2 ) ∈ {a, c} and f̄ ′(P l+1

2 ) = b by SM. However, if f̄(P l+1
2 ) = c, f̄ ′(P l+1

2 ) = c

since A(P1, P
′
1) = {a, b}, which is a contradiction. Therefore, f̄(P l+1

2 ) = a and

f̄ ′(P l+1
2 ) = b.

Since f̄(P2) = a and f̄ ′(P2) = b, f̄(P ′2) = a and f̄ ′(P ′2) = b. Finally, we can apply

the same process to agent 3, 4, ..., and n to complete the proof.

Now, we prove the following lemma and end the proof of Theorem 1.

Lemma 4. Let f : Dn → A be a unanimous scf where D is weakly connected

without restoration. Then if f is G-LOBIC, then for every agent i ∈ N , his type Pi

8P−1 ≡ (P2, ..., Pn), P−{1,2} ≡ (P3, ..., Pn).
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and P−i ∈ Dn−1, f(P ′i ,P−i) = f(Pi,P−i) for any adjacent type P ′i of Pi such that

P ′i (1) = Pi(1).

Proof. Suppose the contrary for the sake of contradiction and assume WLOG that

f(P ′1,P−1) 6= f(P1,P−1) for some adjacent preferences P1, P
′
1 with a∗ ≡ P1(1) = P ′1(1)

and some P−1 ∈ Dn−1. Then by SM, either [f(P1,P−1) = P1(k) and f(P ′1,P−1) =

P1(k+ 1)] or [f(P1,P−1) = P1(k+ 1) and f(P ′1,P−1) = P1(k)] holds. Without loss of

generality, assume the former case and let a ≡ P1(k) and b ≡ P1(k + 1). Then, we

can manipulate the preference orderings of other agents contingent on their relative

rankings between a, b and a∗.

Case 1: If P2(1) = a∗, then take P ′2 = P2. Then by Lemma 4, f̄(P ′2) = a and

f̄ ′(P ′2) = b.

Case 2: If P2(1) 6= a∗ and aP2 b, take P ′2 = P1 so that ranking between a and b

for P ′2 matches that of P2. Then by Lemma 4, f̄(P ′2) = a and f̄ ′(P ′2) = b.

Case 3: Analogously, if P2(1) 6= a∗ and bP2a, take P ′2 = P ′1. Then f̄(P ′2) = a and

f̄ ′(P ′2) = b.

We can apply the same procedure to the preference orderings of agent 3, 4, ..., and

n to get f(P1, P
′
2, P

′
3, ..., P

′
n−1, P

′
n) = a 6= a∗ and f(P ′1, P

′
2, P

′
3, ..., P

′
n−1, P

′
n) = b 6= a∗

where Pj(1) = P ′j(1) = a∗ for all j ∈ N , which contradicts unanimity of f .

Since D is weakly connected without restoration, for any P̄1 ∈ D with P̄1(1) = a∗,

we can construct a path from P1 to P̄1 that is without (a∗, P1(2))-restoration. Then

along this path, a∗ is never swapped with another alternative. Therefore, we can

apply Lemma 4 to every swap of the path to get f(P̄1,P−1) = f(P1,P−1), which

completes the proof for Theorem 1.

Proof of Proposition 1.

We show that for any profile of generic priors {µi}i∈N , f is LOBIC with respect to µ

if and only if it is OBIC with respect to µ.

It suffices to show that LOBIC implies OBIC. Suppose that f is LOBIC with

respect to {µi}i∈N and fix i ∈ N , Pi, P
′
i ∈ D, a ∈ A. Since D is connected without

restoration, there exists a path (Pi = P 0
i , P

1
i , ..., P

h
i , P

h+1
i = P ′i ) connecting Pi and

P ′i without restoration. We show that for any l ∈ {0, ..., h}, if πf
i (B(a, Pi), Pi) ≥

πf
i (B(a, Pi), P

l
i ), then πf

i (B(a, Pi), Pi) ≥ πf
i (B(a, Pi), P

l+1
i ). There are three possible

cases depending on the intersection of A(P l
i , P

l+1
i ) and B(a, Pi).
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Case A: SupposeA(P l
i , P

l+1
i )∩B(a, Pi) = ∅ orA(P l

i , P
l+1
i ). Then, πf

i (B(a, Pi), P
l
i ) =

πf
i (B(a, Pi), P

l+1
i ) by SM.

Case B: Suppose A(P l
i , P

l+1
i )∩B(a, Pi) = {x} and P l+1

i is an (x, y)-swap of P l
i for

some x, y ∈ A. Then since f is LOBIC with respect to {µi}i∈N , πf
i (B(x, P l

i ), P
l
i ) ≥

πf
i (B(x, P l

i ), P
l+1
i ), which implies that πf

i (x, P l
i ) ≥ πf

i (x, P l+1
i ). Also, πf

i (b, P l
i ) =

πf
i (b, P l+1

i ) holds for all b ∈ B(a, Pi)\{x} by SM. Thus, πf
i (B(a, Pi), P

l
i ) ≥ πf

i (B(a, Pi), P
l+1
i ).

Case C: Lastly, suppose A(P l
i , P

l+1
i )∩B(a, Pi) = {x} and P l+1

i is a (y, x)-swap of

P l
i for some x, y ∈ A. Then, y Pi x since the path is without restoration. It leads a

contradiction that A(P l
i , P

l+1
i ) ∩B(a, Pi) cannot be {x}.

Since πf
i (B(a, Pi), Pi) ≥ πf

i (B(a, Pi), P
1
i ) holds by LOBIC, we have πf

i (B(a, Pi), Pi) ≥
πf
i (B(a, Pi), P

′
i ) by induction.

Proof of Theorem 2. First, for the equivalence between G-LOBIC and G-OBIC,

we show that for a profile of generic priors {µi}i∈N , f is LOBIC with respect to µ

if and only if it is OBIC with respect to µ. It suffices to show that LOBIC implies

OBIC.

Suppose f is LOBIC but not OBIC with respect to {µi}i∈N which implies that

there exist i ∈ N , a ∈ A and Pi, P
′
i ∈ D such that πf

i (B(a, Pi), P
′
i ) > πf

i (B(a, Pi), Pi).

Then, for some P−i ∈ Dn−1 with µ(P−i) > 0, x ∈ B(a, Pi) and y /∈ B(a, Pi),

f(Pi,P−i) = y and f(P ′i ,P−i) = x so that xPi y.

Consider a path from Pi to P ′i that is without {x, y}-restoration (Pi = P 0
i , P

1
i , ..., P

h
i , P

h+1
i =

P ′i ). Since f is unanimous and G-LOBIC, it satisfies swap monotonicity and tops-

onlyness by Theorem 1. Then for some step 0 ≤ l < h, P l
i (1) = y because otherwise,

f(P ′i ,P−i) = y since the outcome of f can change only by a top-swap that includes the

previous outcome of f . Let l′ be the smallest integer such that P l′
i (1) = y holds. Also,

by an analogous logic, there exists an integer l′ < l′′ ≤ h+ 1 such that P l′′
i (1) = x. It

induces a contradiction since xPi y and the path is with {x, y}-restoration.

For the equivalence between LDSIC and DSIC, it suffices to show that if f is

LDSIC, then it is DSIC. Suppose not, i.e, that there exist i ∈ N , Pi, P
′
i ∈ D and

P−i ∈ Dn−1 such that f(P ′i ,P−i)Pi f(Pi,P−i). Since an LDSIC scf is LOBIC with

respect to any prior, it is G-LOBIC and thus it satisfies SM and tops-onlyness. Then

by an analogous argument to that of Theorem 2, every path connecting Pi and P ′i is

with {f(Pi,P−i), f(P ′i ,P−i)}-restoration, which induces a contradiction.
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Proof of Lemma 1.

We first argue that f satisfies elementary monotonicity. Suppose not, i.e., that for

an agent(say agent 1,) some P−1 ∈ Dn−1 and P1, P
′
1 ∈ D, P ′1 is a (a, b)-swap of P1 for

some a, b ∈ A, f(P1,P−1) 6= a and f(P ′1,P−1) = a.

Since f is tops-only by Theorem 1, P1(1) = a and P1(2) = b. Also, f(P1,P−1) ∈
{a, b} by SM so f(P1,P−1) = b. Now we modify the preference orderings for all j ∈ N
such that Pj 6= P1 and Pj 6= P ′1. Denote the set of such agents by N ′ ⊂ N .

If 2 /∈ N ′, then take P ′2 = P2. Otherwise, take P ′2 = P1 if aP2 b and P ′2 = P ′1

if b P2 a. In both cases, we have f(P1, P
′
2,P−{1,2}) = b and f(P ′1, P

′
2,P−{1,2}) = a by

Lemma 4. If we repeat the same process for agent 3, 4, ... , and n, then (P1,P
′
−1)

and (P ′1,P
′
−1) are top-2 profiles but do not satisfy elementary monotonicity. This

contradicts weak elementary monotonicity of f . Next, Lemma 5 completes the proof:

Lemma 5 (Mishra 2016). For any domain D ⊆ P , an scf f : D → A is LDSIC if

and only if it is G-LOBIC and satisfies elementary monotonicity.
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