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1 Introduction

With the continuing growth and availability of vast datasets in economics and finance, the use of functional

data in applied econometric work is becoming increasingly popular. These developments are facilitated by

methodological extensions of existing econometric tools of estimation and inference to a functional data

environment, which in turn relies on early statistical research, including Ramsay and Dalzell (1991), Rice

and Silverman (1991), Ramsay and Silverman (1997), Bosq (2000), and Horvath and Kokoszka (2012)

among many others.

In the econometric literature various empirical features of functional data have been studied, including

quantile curve properties. To mention a few: Li, Robinson, and Shang (2020) use functional principal com-

ponent analysis to estimate the long run covariance function of functional data with long run dependence;

Chang, Hu, and Park (2019) focus on the serial correlation between functional observations; Crambes,

Gannoun, and Henchiri (2013) study estimation of the quantile function when the dependent variable is a

random variable but the explanatory variables involve functional observations, which are transformed to

random variables by integration using support vector machines to estimate the quantile function between

the dependent variable and transformed observations; Phillips and Jiang (2019) develop parametric autore-

gressive methods with function valued time series, establish asymptotic theory allowing for nonstationarity,

and apply the methods to household Engel curves; Cho, Phillips, and Seo (2022) explore conditional mean

estimation and inference with functional data in a parametric model context, develop asymptotic theory,

and apply the methodology to lifetime income profiles. Readers are referred to the latter paper for further

discussion of the existing literature.

Quantile regression is commonly used to provide useful additional information about how the generating

mechanism may be influenced at different quantiles. This device has been heavily used in empirical work

with time series and cross section data but may also be employed when the data involve observable curves

or functions, just as is the case in estimating moments such as the population mean of a function or curve.

Development of this framework is one of the goals of the present paper. Functional quantile regression helps

to provide a deeper analysis of the mechanisms that influence the characteristics of observed curves, such as

the lifetime income profiles studied in Cho, Phillips, and Seo (2022), revealing how such factors as gender

and education may affect the income profile at various quantiles in the population.

Quantile function estimation presents new econometric challenges and many advantages. Existing stud-

ies in the literature assume a scalar-valued random response variable that is determined by certain inner

products of function-valued covariates with regression coefficient functions that may be quantile dependent

(e.g., Cardot et al., 2005; Ferraty et al., 2005; Chen and Müller, 2012; Kato, 2012; Crambes et al., 2013; Li

et al., 2022). This model enables inference concerning the constancy of the coefficient function across quan-

tiles. Our approach differs from this research by allowing the response variable itself to be function-valued,

so that the model explains how the dependent function is determined as an element in a function space and

how this determination may be influenced at different quantiles. Each quantile curve is formulated in a
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Figure 1: Estimated quantile curves at levels τ ∈ {0.25, 0.50, 0.75} for 0-40 year and 10-40 year working
careers of men and women with doctoral level education.

parametric regression form wherein the parametric coefficients provide meaningful measures of how certain

covariates influence the response curves at each quantile. This methodology enables analysis of data, such

as full career income paths, with temporal and possibly persistent dependence structures embodied in the

observations themselves.

The goal of the present study is therefore to develop a methodology for modeling such quantile curves as

function-valued regressions with an asymptotic theory of estimation and inference that is useful to applied

researchers interested in understanding the features of functional data. To illustrate this methodology we

examine worker’s log income profiles as curves that evolve over time and reflect the influence on income of

such facets as gender and educational qualifications in combination with years of accumulated career expe-

rience. Figure 1 provides an empirical example studied later in the paper in terms of the lifetime log income

paths (LIPs) over 0–40 years and over 10–40 years of work experience for female and male white workers

in the US each with doctoral education levels and each born between 1960 and 1962. The lines in the figure
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show fitted quantile time curves obtained by quadratic (red), cubic (blue), and quartic (green) parametric

specifications of these functions. The three lines at the top and the lines at the bottom of the figure are the

fitted quantile functions at levels τ = 0.75 and τ = 0.25. The three middle lines are the fitted quantile func-

tions at the median level τ = 0.5. These fitted curves show evidence of differences between genders. For

each τ , the male quantile function is located above the female quantile function; and the difference between

the female quantile functions at τ = 0.25, 0.75 are wider at lower years of experience but more narrower at

higher years of experience than the corresponding male quantile functions. These measures speak to labor

market differences between male and female workers at the higher educational attainment. More generally,

the curves provide a convenient high dimensional summary of career income profiles for workers in various

quantiles according to categories that can be used for inference once appropriate methodology for dealing

with functional data of this type is developed. Notably greater nonlinearity is apparent in the fitted curves

of the lifetime LIPs over 0–40 years than those over 10–40 years, reflecting the effects of early career dif-

ferences. The empirical investigation reported in Section 8 provides detailed classifications and inferences

about these curves according to gender and multiple education levels.

The simplest approach to estimation and inference is to use a parametric model for the quantile function

that can flexibly capture the quantile levels as a function defined over the domain of the data. If the functional

data are continuously distributed with a cumulative distribution function (CDF) at each domain level, the

true quantile function is also continuous; and, when correctly specified parametrically, the quantile function

can be consistently estimated and predicted using just a finite number of unknown coefficients of relevant

covariates. Correct model specification is particularly difficult in this setting because there is always a

positive probability of quantile crossings and hence misspecification, a difficulty that applies even in linear

quantile regressions for simple random variables, as discussed in Phillips (2015). The present paper allows

for the quantile function model to be misspecified, instead of enforcing fully orderly quantile behavior.

In such cases the estimated quantile function is viewed as an approximation for the quantile levels and

asymptotic properties of the estimated parameters are developed under potential model misspecification,

parallel to quasi-maximum likelihood estimation of the conditional mean function using a misspecified

model, as in White (1982).

This paper studies quantile function estimation in settings where parametric misspecification is allowed

and its asymptotic implications are examined. Functional data can be affected by parameter estimation er-

rors that produce nuisance effects which can impact the quantile function asymptotics, which are examined

separately. When several percentiles are considered, multiple quantile functions have to be estimated, the

estimates are asymptotically related, and their large sample behavior is investigated, allowing for both po-

tential nuisance effects and misspecification. Wald, Lagrange multiplier (LM), and likelihood-ratio (LR)

tests are constructed for inference about the parametric curves and simulations are performed to assess fi-

nite sample performance. Finally, the testing methodology is applied to the empirical income profiles of

white male and female workers born in the U.S. between 1960 and 1962, exploring how the fitted quantile
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functions are affected at different percentile levels by gender and education, shedding light on disparities

such as those displayed in Figure 1. It is shown that when log income profiles are rescaled in a manner

that accounts for each individual’s integrated log income path over their work experience years both gender

and education effect differences diminish, thereby implying that these two factors influence the log income

profile proportionally across quantiles. Larger differences in the quantile curves are found when the first ten

years of working careers are included in the observations.1

The organization of the paper follows. Section 2 motivates the use of functional data and examines both

correctly specified and misspecified quantile function model estimation, and analyzes the relation between

correctly specified and misspecified models. Section 3 introduces models for functional data with nuisance

effects. Section 4 examines consistent covariance matrix estimation of the estimated parameters, Section 5

considers multiple quantile level estimation, and Section 6 develops inferential methods for quantile curve

functions. Section 7 reports simulation findings and Section 8 applies the methodology to worker income

profiles. Section 9 concludes. An Online Supplement contains proofs, technical material, and additional

empirical results. For notation we use Lip(·) and C(ℓ)(·) to denote spaces of Lipschitz continuous func-

tions and ℓ-times continuously differentiable functions defined on their respective arguments, and λmin(A)

denotes the smallest eigenvalue of the square matrix A. Other notation is standard.

2 Estimation without Nuisance Effects

We begin by describing the methodological framework. Let G(·) (∈ R) be a continuous random function

defined on a set Γ that is a compact and convex subset of Rg (g ∈ N). Let xτ (γ) be the quantile level

associated with a percentile τ ∈ (0, 1) so that xτ (γ) := inf{x ∈ R : Fγ(x) ≥ τ}, where for each γ ∈ Γ,

Fγ(·) is the cumulative distribution function (CDF) of G(γ). Our goal is to estimate xτ (γ) consistently

uniformly in γ and to make inferences from the functional observations about γ and the functional form

G(·).
A number of empirical examples motivate this methodology and help to shape the framework of the

present study. An early example is apparent in Mincer (1974) and Mincer and Jovanovic (1981) who

modeled the functional form of labor income career profiles as potentially quadratic in career years. Cho,

Phillips, and Seo (2022) recently extended that investigation using continuous work history sample (CWHS)

data. In that research, for each individual an annual labor income profile before taxes was interpolated using

local polynomial kernel estimation, producing a continuous income path. These lifetime income paths were

compared across demographic groups according to the gender, years of work experience, and education of

each worker, revealing that the mean income paths were largely proportional over gender and education

levels. This investigation is more directly executed in the present study by treating the underlying path data

as a continuous random function, represented by G(·), over career years and its quantile function xτ (·) may

1The Online Supplement provides a detailed comparison between the quantile curve findings for 0-40 working career and 10-40
working career cycles and for all tertiary education levels. See Figs. A.1 and A.2 and attendant discussion in the Online Supplement.
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then be estimated. For each γ, the mean function E[G(γ)] can be represented as the integral
∫ 1
0 xτ (γ)dτ , so

that different gender and education effects on the income profiles can be identified at different τ percentile

levels in a more direct manner. This approach is illustrated in Figure 1, as discussed above. Section 8 reports

a more detailed analysis of these data, classifying according to various education levels and investigating

how gender and education influence the quantile functions using the inferential methods developed below.

This type of quantile functional data analysis is by no means limited to labor income profiles. Measure-

ment of any economic variable over time is a fundamental step in evaluating the evolution and impact of

prevailing economic conditions. Quantile function evolution over time at different τ levels using functional

observations enables estimation and inference concerning the impact of relevant covariates on the shapes

of these quantile curves. As another example, many government economic policies are implemented for

a redistributive purpose. Minimum wage legislation, capital gains taxes, and progressive income taxes are

all intended to impact particular groups differentially rather than uniformly across the entire economy. For

instance, if G(·) denotes the income process after taxes over time and a capital gains tax is levied within the

sample period, it may be difficult to detect the treatment effect of the capital gains tax by estimating just the

mean value E[G(·)]. Instead, estimation of the time profile of a bottom or top percentile x-% of the income

distribution after taxes might be much more useful in detecting the relevant treatment effect, viz., xτ (·).
Our approach also contributes to the literature by enabling estimation of and inference concerning pos-

sibly misspecified parametric models for the quantile function xτ (·). Davies (1977, 1987) discussed testing

hypotheses where a nuisance parameter is not identified and the resulting methodology has been applied

in several econometric model contexts. For example, Andrews (1993) used this approach in developing

testing methodology for structural break analysis without knowedge of the structural break point and where

the break point is treated as a nuisance parameter that is unidentified under the null of no structural break.

That paper showed how the appropriately standardized score function converges weakly to a functional of a

Gaussian process defined on the unit interval under the null. For such a case, the individual quasi-score ob-

tained with respect to the identified parameter can be treated as G(·) on the space of the nuisance parameter

that is unidentified under the null, and the quantile function xτ (·) can be developed for use in this and other

structural break tests.

To provide a formal framework for quantile functional data analysis we specifically suppose the follow-

ing data generating process (DGP) condition for continuous functional random observations.

Assumption 1. (i) (Ω,F ,P) is a complete probability space and Γ is a compact metric space; (ii) {Gi :

Γ 7→ R}ni=1 is a set of identically and independently distributed (iid) observations such that for each γ ∈ Γ,

{Gi(γ)} is F-measurable, and Gi(·) ∈ Lip(Γ) for all ω ∈ F ∈ F with P(F ) = 1; (iii) (Γ,G,Q) and

(Ω × Γ,F ⊗ G,P · Q) are complete probability spaces, and gi( · , · ) is F ⊗ G-measurable ; (iv) for each

γ, Fγ(·) ∈ C(1)(R), and fγ(·) is uniformly bounded, where Fγ(·) and fγ(·) are the CDF and probability

density function (PDF) of Gi(γ), respectively. □

The DGP condition in Assumption 1 extends that of Cho, Phillips, and Seo (2022). Here, Q is an adjunct
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probability measure that augments P and is a probability measure selected by the investigator and attached

to the space (Γ,G) to complete the probabilistic structure of a parametric curve representation and assist in

developing parameter estimation.

The standard quantile regression (QR) framework of Koenker and Bassett (1978) is now extended to

this formal setting to accommodate quantile function regression. Specifically, for each τ ∈ (0, 1), we let the

check function be defined as ξτ (u) := u (τ − 1{u ≤ 0}) and further let

qτ (γ, u) := E[ξτ (G(γ)− u)] = (τ − 1)

∫ u

−∞
(g − u)dFγ(g) + τ

∫ ∞

u
(g − u)dFγ(g).

Note that for each γ, qτ (γ, ·) is minimized at xτ (γ). Furthermore, if u = xτ (γ), it follows that for each γ,

qτ (γ, xτ (γ)) = E[ξτ (G(γ)− xτ (γ))] = τ

∫ ∞

−∞
(g − xτ (γ))dFγ(g)−

∫ xτ (γ)

−∞
(g − xτ (γ))dFγ(g).

Let dτ (γ, u) := E[ξτ (G(γ)−u)]−E[ξτ (G(γ)−xτ (γ))], so that qτ (γ, u) = dτ (γ, u)+E[ξτ (G(γ)−xτ (γ))].

Here, dτ (·, u) is the only term associated with u on the right side, so that optimization of qτ (γ, ·) can be

equivalently conducted by optimizing dτ (γ, ·). Furthermore, we can view dτ (·, u) in a different way by

associating it with a model for xτ (γ). For this purpose, we provide the following lemma.

Lemma 1. Given Assumption 1, for each u ∈ R, dτ (γ, u) =
∫ max[u,xτ (γ)]
min[u,xτ (γ)]

|Fγ(g)− Fγ(xτ (γ))|dg. □

Lemma 1 implies that dτ (γ, u) ≥ 0 uniformly in u, and dτ (γ, u) = 0 if and only if u = xτ (γ). Therefore,

dτ (γ, ·) is minimized by letting u = xτ (γ).

We next suppose a parametric model for the quantile function as a function of the parameter γ and relate

this model to Lemma 1. More specifically, suppose that an empirical investigator specifies a particular model

for u in Lemma 1 to further minimize dτ (γ, ·). We write this model for xτ (·) in the general form

Mτ := {ρτ (·, θτ ) : θτ ∈ Θτ}, (1)

where the parameter space Θτ is a compact and convex subset in Rcτ (cτ ∈ N). That is, the researcher

chooses a specific parametric functional form ρτ (·, θτ ) to model the quantile function xτ (·). Then Mτ is

correctly specified, if there exists a θ0τ ∈ Θτ such that ρτ (·, θ0τ ) = xτ (·). Otherwise, Mτ is misspecified. In

the current study the model Mτ may be misspecified or correctly specified for the true functional quantile

xτ (·) and asymptotic theory of estimation and inference is developed for both cases. To fix ideas, a simple

linear specification of ρτ such as (10) is used later in simulations and has the form ρτ (γ, θτ ) = θτ1 + θτ2γ,

with parameter vector θτ = (θτ1, θτ2)
′ ∈ Θτ ⊂ R2, dimension cτ = 2, and γ ∈ Γ ⊂ R. Various

fitted quadratic and higher order polynomial quantile curves are alternatives to this linear specification.

Some examples are shown in the empirical illustration of Fig. 1 and more are considered in the application

of Section 8. The model formulation given in (1) provides a convenient parametric formulation of such
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functional information that enables empirical comparisons of the quantile curves obtained from various

parametric model specifications in applications.

We now provide different views on dτ (·, u) by associating Lemma 1 with Mτ . First, if we combine Mτ

with dτ (γ, ·) by integrating the latter with respect to γ weighted by the adjunct probability Q(γ), it follows

that for each θτ ∈ Θτ ,

dτ (θτ ) :=

∫
γ
dτ (γ, ρτ (γ, θτ ))dQ(γ) =

∫
γ

∫ max[ρτ (γ,θτ ),xτ (γ)]

min[ρτ (γ,θτ ),xτ (γ)]
|Fγ(g)− Fγ(xτ (γ))|dgdQ(γ),

where the equality follows from Lemma 1. Note that Q(·) is the probability measure defined on Γ that is

selected by the investigator to suit the particular application in hand2, and so the functional form of dτ (·) also

depends on Q(·). If ρτ (·, θτ ) differs from xτ (·), for each γ, dτ (γ, ρτ (γ, θτ )) becomes a distance bigger than

zero, letting dτ (θτ ) be an average of the non-zero distances weighted by the adjunct probability measure Q.

Thus, the minimum value of dτ (·) can be viewed as the minimized weighted average of the distances. We

now let θ∗τ := argminθτ∈Θτ
dτ (θτ ). If Mτ is correctly specified, θ∗τ = θ0τ by noting that dτ (θ0τ ) = 0 from

the definition of dτ (·). Otherwise, we can view θ∗τ as the parameter value that minimizes the quasi-check

function, just as in quasi-maximum likelihood estimation. Second, our earlier discussion on dτ (·) can be

extended by combining dτ (·) with Mτ , leading to estimation of θ∗τ in a straightforward manner. Note that

if we let mτ (γ, u) := E[ξτ (G(γ)− u)]− E[ξτ (G(γ)− ρτ (γ, θ
∗
τ ))], it follows that

qτ (γ, ρτ (γ, θτ )) = mτ (γ, ρτ (γ, θτ )) + E[ξτ (G(γ)− ρτ (γ, θ
∗
τ ))].

By using this relationship and further letting mτ (θτ ) :=
∫
γ mτ (γ, ρτ (γ, θτ ))dQ(γ), we define

qτ (θτ ) :=

∫
γ
qτ (γ, ρτ (γ, θτ ))dQ(γ) = mτ (θτ ) +

∫
γ
E[ξτ (G(γ)− ρτ (γ, θ

∗
τ ))]dQ(γ).

As for the optimization of qτ (γ, ·), θτ is associated with only mτ (·) on the right side, so that we can obtain

θ∗τ by optimizing qτ (·) instead of mτ (·). That is, θ∗τ = argminθτ∈Θτ
qτ (θτ ).

We therefore estimate the unknown parameter θ∗τ by first estimating qτ (·) and proceeding to minimize

the function with respect to θτ . Specifically, for each θτ ∈ Θτ , define

qτn(θτ ) :=

∫
γ
n−1

n∑
i=1

ξτ (Gi(γ)− ρτ (γ, θτ ))dQ(γ) (2)

and let θ̂τn := argminθτ∈Θτ
qτn(θτ ). We call θ̂τn the functional quantile regression (FQR) estimator if Mτ

is correctly specified; otherwise, θ̂τn will be called the quasi-functional quantile regression (QFQR) estima-
2For instance, in the application associated with Fig 1, it might be of empirical interest to place greater emphasis on lower or

higher income levels.
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tor. Note that the sample average of the check functions in qτn(·) is employed to estimate qτ (γ, ρτ (γ, θτ ))

consistently. Under the regularity conditions given in Assumptions 1, 2, and 3 below, qτn(·) is consistent for

qτ (·). Therefore, if θ∗τ is unique and qτ (·) is continuous on Θτ , the estimator θ̂τn is consistent for θ∗τ under

some general regularity conditions on the model.

Assumption 2. (i) For each θτ ∈ Θτ , ρτ ( · , θτ ) : Γ 7→ R is G–measurable, where Θτ is a compact and

convex set in Rcτ (cτ ∈ N); (ii) for each γ ∈ Γ, ρτ (γ, · ) ∈ C(2)(Θτ ); (iii) for each θτ ∈ Θτ , ρτ ( · , θτ ) ∈
Lip(Γ); and (iv) if we let qτ (θτ ) :=

∫
γ

∫
ξτ{g(γ) − ρτ (γ, θτ )}dP(g(γ))dQ(γ), θ∗τ := argminθτ qτ (θτ ) is

unique and interior to Θτ . □

Assumption 3. For some Mi ∈ L2(P) and M < ∞, (i) supγ |Gi(γ)| ≤ Mi; (ii) sup(γ,θτ ) |ρτ (γ, θτ )| ≤ M ;

(iii) for each j = 1, 2, . . . , cτ , sup(γ,θτ ) |(∂/∂θτj)ρτ (γ, θτ )| ≤ M ; and (iv) for each j and j′ = 1, 2, . . . , cτ ,

supθτ
∣∣(∂2/∂θτj∂θτj′)ρτ ( · , θτ )

∣∣ ≤ M . □

Assumption 2 gives conditions on the model Mτ and Assumption 3 provides bound conditions for the func-

tional observations and the model function that ensure regular behavior for (Q)FQR estimation. Under these

conditions the (Q)FQR estimator is shown to be consistent for θ∗τ and asymptotically normally distributed.

2.1 Estimation under possible misspecification

To analyze the QFQR estimator we use an asymptotic approximation of the functional quantile estimator.

For each γ let the PDF of Gi(γ) be fγ(·) and apply the approximation approach in Oberhofer and Haupt

(2016, p. 710) to obtain the following representation

√
n(θ̂τn − θ∗τ ) = −A∗−1

τ

∫
γ
∇θτρτ (γ, θ

∗
τ )

1√
n

n∑
i=1

(1{Gi(γ) ≤ ρτ (γ, θ
∗
τ )} − τ) dQ(γ) + oP(1), (3)

where ∇θτ = ∂/∂θτ and

A∗
τ :=

∫
γ
∇θτρτ (γ, θ

∗
τ )fγ(ρτ (γ, θ

∗
τ ))∇′

θτρτ (γ, θ
∗
τ )dQ(γ).

Although Oberhofer and Haupt (2016) assume a correctly specified model to make use of the results of

Knight (1998), this approximation remains valid even when Mτ is misspecified.

The approximation implies that the limit behavior of
√
n(θ̂τn − θ∗τ ) is determined by the two factors

in the leading term on the right side of (3). The matrix A∗
τ in the first factor involves only non random

model components. For regular behavior of θ̂τn it is necessary for A∗
τ to be positive definite, as assumed

in Assumption 4 below. The limit distribution of the QFQR estimator is determined mainly by the other

components on the right side of (3). From Assumptions 2 and 3 it trivially follows that qτ (·) satisfies the
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first-order condition ∇θτ qτ (θ
∗
τ ) = 0 at θ∗τ , implying that

E
[∫

γ
∇θτρτ (γ, θ

∗
τ )(1{Gi(γ) ≤ ρτ (γ, θ

∗
τ )} − τ)dQ(γ)

]
= 0.

Hence, letting Jτi :=
∫
γ ∇θτρτ (γ, θ

∗
τ ) (1{Gi(γ) ≤ ρτ (γ, θ

∗
τ )} − τ) dQ(γ) and with B∗

τ := E[JτiJ ′
τi] posi-

tive definite, standard multivariate central limit theory (CLT) using the Cramér-Wold device yields

1√
n

n∑
i=1

Jτi
A∼ N (0, B∗

τ ).

As Mτ is possibly misspecified, for each γ, E[1{Gi(γ) ≤ ρτ (γ, θ
∗
τ )}] is not necessarily identical to τ ,

although the first-order condition still has to hold.

Limit theory for the QFQR estimator is given below in Theorem 1, based on the following regularity

conditions that are used in deriving the limit distribution under possible misspecification of Mτ .

Assumption 4. (i) λmin(A
∗
τ ) > 0, where A∗

τ :=
∫
γ ∇θτρτ (γ, θ

∗
τ )fγ(ρτ (γ, θ

∗
τ ))∇′

θτ
ρτ (γ, θ

∗
τ )dQ(γ); and (ii)

λmin(B
∗
τ ) > 0 where B∗

τ := E[JτiJ ′
τi] and Jτi :=

∫
γ ∇θτρτ (γ, θ

∗
τ )(1{Gi(γ) ≤ ρτ (γ, θ

∗
τ )} − τ)dQ(γ). □

Using these and the earlier conditions, asymptotic theory for the estimator θ̂τn is as follows.

Theorem 1. Given Assumptions 1, 2, 3, and 4, if Mτ is misspecified,
√
n(θ̂τn − θ∗τ )

A∼ N (0, C∗
τ ), where

C∗
τ := A∗−1

τ B∗
τA

∗−1
τ . □

The distribution of the QFQR estimator is therefore asymptotically normal with a variance matrix that has

a sandwich-form, as expected in a misspecified case. The matrix B∗
τ is the variance matrix of Jτi and must

be estimated consistently to enable inference, which is discussed later in Section 4.

2.2 Estimation under correct specification

When Mτ is correctly specified the asymptotic theory given in Theorem 1 remains applicable and relevant

to FQR estimation. But it is useful to provide an explicit derivation and representation of the limit theory,

which can be obtained using functional central limit theory (FCLT).

For each γ, let Fγ(·) be the marginal CDF of Gi(γ) so that Fγ(ρτ (γ, θ
0
τ )) = τ . It follows that

(1{Gi(γ) ≤ ρτ (γ, θ
0
τ )} − τ) = (1{Ui(γ) ≤ τ} − τ), where for each γ, Ui(γ) := Fγ(Gi(γ)). Note

that Ui(γ) is the probability integral transformation (PIT) of Gi(γ), so that for each γ, Ui(γ) follows a

standard uniform distribution, implying that E[1{Gi(γ) ≤ ρτ (γ, θ
0
τ )}] = τ . Therefore,

1

n

n∑
i=1

1{Ui(γ) ≤ τ} P→ τ and
1√
n

n∑
i=1

(1{Ui(γ) ≤ τ} − τ)
A∼ N (0, τ(1− τ))

by the law of large numbers (LLN) and CLT, respectively. The limit theory is strengthened by use of the

functional limit result of the following lemma.
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Lemma 2. Given Assumptions 1 and 2, if Mτ is correctly specified, n−1/2
∑n

i=1(1{Gi(·) ≤ ρτ (·, θ0τ )} −
τ) ⇒ Gτ (·), where Gτ (·) is a zero-mean Gaussian process such that for each γ and γ′ ∈ Γ, E[Gτ (γ)Gτ (γ

′)]

= κτ (γ, γ
′) := E [1{Ui(γ) ≤ τ}1{Ui(γ

′) ≤ τ}]− τ2. □

Therefore, from Lemma 2, it follows that∫
γ
∇θτρτ (γ, θ

0
τ )n

−1/2
n∑

i=1

(
1{Gi(γ) ≤ ρτ (γ, θ

0
τ )} − τ

)
dQ(γ) ⇒

∫
γ
∇θτρτ (γ, θ

0
τ )Gτ (γ)dQ(γ),

by applying continuous mapping. Note that the weak limit function has the same normal distribution as

given in Theorem 1. Lemma 2 is straightforwardly proved if n−1/2
∑n

i=1

(
1{Gi(·) ≤ ρτ (·, θ0τ )} − τ

)
is

stochastically equicontinuous, thereby enabling use of the FCLT (e.g., Billingsley, 1999; Pollard, 1984).

Andrews (1994) provides sufficient conditions for stochastic equicontinuity for various types of functions

that apply Ossiander’s L2 entropy condition. Indeed, in the present case it is sufficient to apply example 2

in Andrews (1994, p. 2279) to show that the random function in Lemma 2 satisfies Ossiander’s L2 entropy

condition.

Limit theory for the FQR estimator is given in Theorem 2 based on the following regularity conditions.

Assumption 5. (i) λmin(A
0
τ ) > 0, where A0

τ :=
∫
γ ∇θτρτ (γ, θ

0
τ )fγ(ρτ (γ, θ

0
τ ))∇′

θ0τ
ρτ (γ, θ

0
τ )dQ(γ) and

θ0τ is such that ρτ (·, θ0τ ) = xτ (·) and for each γ, xτ (γ) denotes the τ -th quantile level of Gi(γ); and (ii)

λmin(B
0
τ ) > 0 where we let B0

τ :=
∫
γ′

∫
γ ∇θρτ (γ, θ

0
τ )κτ (γ, γ

′)∇′
θρτ (γ̃, θ

0
τ )dQ(γ)dQ(γ′) and κτ (γ, γ

′) :=

E[1{Fγ(Gi(γ)) ≤ τ}1{Fγ′(Gi(γ
′)) ≤ τ}]− τ2. □

Theorem 2. Given Assumptions 1, 2, 3, and 5, if Mτ is correctly specified,
√
n(θ̂τn − θ0τ )

A∼ N (0, C0
τ ),

where C0
τ := A0−1

τ B0
τA

0−1
τ . □

The FQR limit theory is obtained in a different way from that of QFQR, even though the former specializes

to give the result under correct specification. Since θ∗τ = θ0τ under correction model specification it follows

that A∗
τ = A0

τ . Further, the matrix B0
τ is obtained from the covariance kernel of Gτ (·), implying that B0

τ can

be consistently estimated by first estimating the kernel function κτ (·, ·). This approach is discussed later in

Section 4.

3 Estimation with Nuisance Effects

For practical application it is useful to extend the functional data structure by allowance for estimation errors

in the observations. More specifically, functional data are often affected by parameter estimation errors, as

illustrated in the examples of Cho, Phillips, and Seo (2022). The limit theory in both FQR and QFQR

estimation is affected by such estimation errors.

To allow for such measurement errors, let Ĝ(·) (∈ R) be a continuous random function defined on the

same Γ as before but such that Ĝ(·) := G(·, π̂n), where π̂n (∈ Rs) denotes a set of nuisance parameters
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such that for positive definite matrices P ∗ ∈ Rs×s and H∗ ∈ Rs×s, π̂n is a consistent estimator of some

π∗ ∈ Π ⊂ Rs (s ∈ N) with

√
n(π̂n − π∗) = −P ∗−1 1√

n

n∑
i=1

Si + oP(1)
A∼ N

(
0, P ∗−1H∗P ∗−1

)
.

Many standard procedures have estimators with this general property and associated asymptotic normal limit

theory, including least squares, two-stage least squares, maximum likelihood, and GMM; and functional

observations are often generated in such a manner with parameter estimation errors, as discussed in Cho,

Phillips, and Seo (2022). Functional observations of the type in Section 2 can be regarded as data with no

nuisance effects induced by parameter estimation by letting Gi(·) = Gi(·, π∗).

Before proceeding, we augment the regularity and probability space condition to include nuisance ef-

fects.

Assumption 6. (i) Let (Ω,F ,P) be a complete probability space, Γ ⊂ Rg (g ∈ N) be a compact metric

space, and Π ⊂ Rs (s ∈ N) be compact; (ii) {G̃i : Γ × Π 7→ R}ni=1 is a set of iid observations such that

(ii.a) for each (γ, π) ∈ Γ× Π, G̃i(γ, π) is F-measurable; (ii.b) for each π ∈ Π, G̃i( · , π) ∈ Lip(Γ) for all

ω ∈ F ∈ F with P(F ) = 1; (ii.c) for each γ ∈ Γ, G̃i(γ, · ) is in C(1)(Π) for all ω ∈ F ∈ F with P(F ) = 1;

(iii) (Γ,G,Q) and (Ω × Γ,F ⊗ G,P · Q) are complete probability spaces and for i = 1, 2, . . . and π ∈ Π,

G̃i( · , π) is F ⊗ G-measurable; and (iv) for each γ, Fγ(·) ∈ C(1)(R), and fγ(·) ∈ Lip(R) and uniformly

bounded, where for some π∗, Fγ(·) and fγ(·) are the CDF and PDF of G̃i(γ, π
∗), respectively. □

Assumption 7. There exists a sequence of measurable functions {π̂n : Ω 7→ Π} such that (i) π̂n → π∗

a.s.−P, where π∗ is an interior element in Π; (ii) for a nonstochastic finite s × s matrix P ∗ such that

λmin(P
∗) > 0 and a sequence of F-measurable random vectors {Sn∗},

√
n(π̂n − π∗) = −P ∗−1n1/2S∗

n +

oP(1); and (iii) for i = 1, 2, . . ., there is Si : Ω 7→ Rs such that (iii.a) Si is F-measurable and iid; (iii.b)
√
nS∗

n = n−1/2
∑n

i=1 Si + oP(1); and (iii.b) for some Mi ∈ L2(P) and for each j = 1, . . . , s, |Sij | ≤ Mi,

where Sij is the j-th row element of Si. □

Assumption 8. For some Mi ∈ L2(P) and M < ∞, (i) sup(γ,π) |G̃i(γ, π)| ≤ Mi; (ii) supj sup(γ,π) |(∂/∂πj
)G̃i(γ, π)| ≤ Mi; (iii) sup(γ,θτ ) |ρτ (γ, θτ )| ≤ M ; (iv) for each j = 1, 2, . . . , cτ , sup(γ,θτ ,π) |(∂/∂θτj)ρτ (γ,
θτ , π)| ≤ M ; (v) for each j, j′ = 1, . . . , cτ , sup(γ,θτ ,π) |(∂

2/∂θτj∂θτj′)ρτ (γ, θτ , π)| ≤ M ; and (vi) for

each j = 1, 2, . . . , s, E[(∂/∂πj)G̃i(·, π∗)] ∈ Lip(Γ). □

Assumptions 6 and 7 are included to allow for functional data featuring nuisance effects, characterizing

the implications of the parametric estimates π̂n embodied in the functional observations; and Assumption 8

generalizes the bound condition of Assumption 3 to accommodate nuisance parameter estimation.

The quantile function can be estimated in parallel to (Q)FQR estimation using the same model Mτ ,

allowing for possible misspecification. In particular, the quantile function is obtained by minimizing the

11



following function, which embodies the estimated curves Ĝ(·) := G(·, π̂n), so that for each θτ ∈ Θτ ,

q̂τn(θτ ) :=

∫
γ

1

n

n∑
i=1

ξτ{Ĝi(γ)− ρτ (γ, θτ )}dQ(γ),

giving θ̃τn := argminθτ∈Θτ
q̂τn(θτ ). We call θ̃τn the two-stage functional quantile regression (TSFQR)

estimator in the case of a correctly specified model Mτ ; otherwise, θ̃τn is called the two-stage quasi-

functional quantile regression (TSQFQR) estimator. The only difference between q̂τn(·) and qτn(·) is in the

fact that q̂τn(·) is obtained using the functional observations Ĝ(·) := G(·, π̂n) that embody nuisance effects.

3.1 Estimation under possible model misspecification

As in Section 2.1, suppose that the model Mτ may be misspecified. The asymptotic properties of the

TSQFQR estimator can be derived in a similar fashion to those of the QFQR estimator. In particular,

approximating the TSQFQR estimation error as in (3) by using the Oberhofer and Haupt (2016, p. 710)

approach, it follows that for each γ,

√
n(θ̃τn − θ∗τ ) = −A∗−1

τ

∫
γ
∇θτρτ (γ, θ

∗
τ )

1√
n

n∑
i=1

(
1{Ĝi(γ) ≤ ρτ (γ, θ

∗
τ )} − τ

)
dQ(γ) + oP(1). (4)

As before the limit theory is determined by the two factors in the leading component on the right side of (4).

The matrix A∗
τ is the same as in QFQR estimation but without the nuisance effect; and the second factor

determines the limit distribution theory. In view of Assumptions 2 and 8, first-order conditions hold for

qτ (·) at θ∗τ , so that ∇θτ qτ (θ
∗
τ ) = 0 and

E
[∫

γ
∇θτρτ (γ, θ

∗
τ )
(
1{Ĝi(γ) ≤ ρτ (γ, θ

∗
τ )} − τ

)
dQ(γ)

]
= 0.

Next, let Ĵτi :=
∫
γ ∇θτρτ (γ, θ

∗
τ )(1{Ĝi(γ) ≤ ρτ (γ, θ

∗
τ )}− τ)dQ(γ) and suppose that its asymptotic covari-

ance matrix, denoted by B̃∗
τ , is positive definite. Then by standard multivariate central limit theory

1√
n

n∑
i=1

Ĵτi
A∼ N (0, B̃∗

τ ).

In the present case, E[1{Ĝi(γ) ≤ ρτ (γ, θ
∗
τ )}] is not necessarily identical to τ for each γ because Mτ may be

misspecified. Nevertheless, its integral is necessarily associated with τ by virtue of the first-order conditions

for θ∗τ ; and this property leads to the asymptotic normal distribution even when Mτ is misspecified.

The limit distributions with and without nuisance effects differ, mainly because of differences between

the variance matrices B∗
τ and B̃∗

τ . Applying the mean-value theorem, for each γ and some π̄γn between π∗
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and π̂n, we have

n∑
i=1

Ĵτi =

∫
γ
∇θτρτ (γ, θ

∗
τ )

n∑
i=1

(1{G̃i(γ, π
∗) +∇′

πG̃i(γ, π̄γn)(π̂n − π∗) ≤ ρτ (γ, θ
∗
τ )} − τ)dQ(γ).

If we further let K∗
τ :=

∫
γ ∇θτρτ (γ, θ

∗
τ )fγ(ρτ (γ, θ

∗
τ ))E[∇′

πG̃i(γ, π
∗)]dQ(γ), we can rewrite this equation

as follows:
1√
n

n∑
i=1

Ĵτi =
1√
n

n∑
i=1

(Jτi −K∗
τP

∗−1Si) + oP(1)

by applying Assumptions 6, 7, and 8 which suffice to apply the uniform law of large numbers (ULLN).

More specifically, n−1
∑n

i=1∇πG̃i(·, π∗)
P→ E[∇πG̃i(·, π∗)] uniformly on Γ. Using this property, if the

multivariate CLT applies, the asymptotic covariance matrix of n−1/2
∑n

i=1 Ĵτi is obtained as

B̃∗
τ := B∗

τ − E[JτiS′
i]P

∗−1K∗′
τ −K∗

τP
∗−1E[SiJ

′
τi] +K∗

τP
∗−1H∗P ∗−1K∗′

τ

by noting that B∗
τ := E[JτiJ ′

τi], where H∗ := E[SiS
′
i]. That is, E[ĴτiĴ ′

τi] = B̃∗
τ + oP(1). Note that B̃∗

τ

differs from B∗
τ mainly due to the nuisance effects. In the absence of nuisance effects simply set Si ≡ 0,

which leads to B̃∗
τ := B∗

τ .

The limit theory for TSQFQR estimation is based on the following additional regularity conditions,

which ensure that the limit distribution of the TSQFQR estimator is non-degenerate.

Assumption 9. (i) λmin(A
∗
τ ) > 0; (ii) λmin(L

∗
τ ) > 0; and (iii) λmin(B̃

∗
τ ) > 0, where

L∗
τ :=

[
H∗ V ∗′

τ

V ∗
τ B∗

τ

]
,

H∗ := E[SiS
′
i], and V ∗

τ := E[JτiS′
i]. □

By virtue of Assumption 9, Si, Jτi and Ĵτi all have positive definite variance matrices.

Theorem 3. Given Assumptions 2, 6, 7, 8, and 9, if Mτ is misspecified,
√
n(θ̃τn − θ∗τ )

A∼ N (0, C̃∗
τ ), where

C̃∗
τ := A∗−1

τ B̃∗
τA

∗−1
τ . □

3.2 Estimation under correct model specification

As in Section 2.2, the limit theory of the TSQFQR estimator continues to apply for TSFQR estimation but

is convenient to analyze using functional central limit theory in a similar fashion as for FQR estimation.
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Specifically, applying the mean-value theorem, for each γ and some π̄γn between π∗ and π̂n, it follows that

∫
γ
∇θτρτ (γ, θ

0
τ )

n∑
i=1

(
1{Ĝi(γ) ≤ ρτ (γ, θ

0
τ )} − τ

)
dQ(γ) (5)

=

∫
γ
∇θτρτ (γ, θ

0
τ )

n∑
i=1

(
1{G̃i(γ, π

∗) +∇′
πG̃i(γ, π̄γn)(π̂n − π∗) ≤ ρτ (γ, θ

0
τ )} − τ

)
dQ(γ).

The component (5) differs from the corresponding component in (3) because nuisance effects are accommo-

dated in the indicator function. Here, for each τ , n−1
∑n

i=1 1{Ĝi(γ) ≤ ρτ (γ, θ
0
τ )}

P→ τ by the LLN from

the fact that Mτ is correctly specified, and for each γ, n−1/2
∑n

i=1(1{Ĝi(γ) ≤ ρτ (γ, θ
0
τ )} − τ) is asymp-

totically normal by the CLT, just as in FQR estimation. Nevertheless, the limit distribution of the TSFQR

estimator differs from FQR estimation because of nuisance parameter estimation effects. To analyze these

effects we first provide the limit behavior of n−1/2
∑n

i=1(1{Ĝi(·) ≤ ρτ (·, θ0τ )} − τ).

Lemma 3. Given Assumptions 2, 6, 7, and 8, if Mτ is correctly specified, n−1/2
∑n

i=1(1{G̃i(·, π∗) +

∇′
πG̃i(·, π̄(·)n) (π̂n − π∗) ≤ ρτ (·, θ0τ )} − τ) ⇒ G̃τ (·), where ∇′

π = ∂/∂π′ and G̃τ (·) is a zero-mean

Gaussian process such that for each γ and γ′, E[G̃τ (γ)G̃τ (γ
′)] = κ̃τ (γ, γ

′) with

κ̃τ (γ, γ
′) :=κτ (γ, γ

′)− fγ(ρτ (γ, θ
0
τ ))E[∇′

πG̃i(γ, π
∗)]P ∗−1E[Si(1{G̃i(γ

′, π∗) < ρτ (γ
′, θ0τ )} − τ)]

− fγ′(ρτ (γ
′, θ0τ ))E[∇′

πG̃i(γ
′, π∗)]P ∗−1E[Si(1{G̃i(γ, π

∗) < ρτ (γ, θ
0
τ )} − τ)]

+ fγ′(ρτ (γ
′, θ0τ ))E[∇′

πG̃i(γ
′, π∗)]P ∗−1H∗P ∗−1E[∇πG̃i(γ, π

∗)]fγ(ρτ (γ, θ
0
τ )),

and for each γ, fγ(·) is the marginal PDF of G̃i(γ, π
∗), as before. □

This limit theory involves the Gaussian stochastic process G̃τ (·) as for Gτ (·) given in Lemma 2, but the

covariance kernels differ. If π∗ were known, there would be no need to approximate Ĝi(·) by the mean-

value theorem with respect to π, so that Si ≡ 0 and the covariance kernel κ̃τ (·, ·) would be identical in

form to that of κτ (·, ·). Furthermore, if θ0τ = θ∗τ , the asymptotic variance matrix of Ĵτi is identical to∫
γ

∫
γ′ ∇θτρτ (γ, θ

∗
τ )κ̃τ (γ, γ

′)∇′
θτ
ρτ (γ, θ∗τ )dQ(γ)dQ(γ′), so that B̃∗

τ can be estimated by first estimating

the covariance kernel κ̃τ (·, ·) as detailed in Section 4.

Lemma 3 is established by showing stochastic equicontinuity, as in Lemma 2. In particular, we derive

the covariance kernel of G̃τ (·) by separating the nuisance effects from Ĝi(·) in the indicator function. Setting

µ̂ni(γ) := ∇′
πGi(γ, π̄γn)(π̂n − π∗), we have

1{Gi(γ, π
∗) +∇′

πGi(γ, π̄γn)(π̂n − π∗) ≤ ρτ (γ, θ
0
τ )} − τ = 1{Gi(γ, π

∗) ≤ ρτ (γ, θ
0
τ )} − τ

+ 1{ρτ (γ, θ0τ ) < Gi(γ) ≤ ρτ (γ, θ
0
τ )− µ̂ni(γ)} − 1{ρτ (γ, θ0τ )− µ̂ni(γ) < Gi(γ) ≤ ρτ (γ, θ

0
τ )}. (6)

Lemma 2 applies to the first term on the right side, converging weakly to Gτ (·). But the second and third

terms of (6) still affect the weak limit of the left side, making the covariance kernel of G̃τ (·) different from
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κτ (·, ·), leading to κ̃τ (·, ·).
To obtain an explicit limit distribution of the TSFQR estimator when Mτ is correctly specified the fol-

lowing regularity conditions are employed. These conditions match those in Assumption 9 and are employed

for the same reason.

Assumption 10. (i) λmin(A
0
τ ) > 0; (ii) λmin(L

0
τ ) > 0; and (iii) λmin(B̃

0
τ ) > 0, where

L0
τ :=

[
H∗ V 0′

τ

V 0
τ B0

τ

]
,

V 0
τ :=

∫
γ ∇θτρτ (γ, θ

0
τ )E[(1{G̃i(γ, π

∗) ≤ ρτ (γ, θ
0
τ )} − τ) · S′

i]dQ(γ), B̃0
τ :=

∫
γ

∫
γ′ ∇θτρτ (γ, θ

0
τ )κ̃τ (γ, γ

′)

∇′
θτ
ρτ (γ, θ

0
τ )dQ(γ)dQ(γ′), and B0

τ is defined in Assumption 5. □

Assumption 10 implies that Si,
∫
γ ∇θτρτ (γ, θ

0
τ )(1{Gi(γ) ≤ ρτ (γ, θ

0
τ )} − τ)dQ(γ) and

∫
γ ∇θτρτ (γ, θ

0
τ )

(1{Ĝi(γ) ≤ ρτ (γ, θ
0
τ )} − τ)dQ(γ) all have positive definite variance matrices.

Theorem 4. Given Assumptions 2, 6, 7, 8, and 10, if Mτ is correctly specified,
√
n(θ̃τn− θ0τ )

A∼ N (0, C̃0
τ ),

where C̃0
τ := A0−1

τ B̃0
τA

0−1
τ . □

Even when Mτ is correctly specified, the limit distribution of the TSFQR estimator differs from that of the

FQR estimator in Theorem 1. The variance matrices B̃0
τ and B0

τ differ due to the presence of the parameter

estimation error introduced by π̂n. Without nuisance parameter estimation, Si ≡ 0, so that B̃0
τ = B0

τ ,

leading to the same distribution for both θ̂τn and θ̃τn.

4 Asymptotic Variance Matrix Estimation

Just as in standard quantile regression the limit distributions of the (Q)FQR and TS(Q)FQR estimators and

particularly their asymptotic variance matrices play a central role in performing inference with functional

data. A key step in the construction of suitable statistics for testing and confidence interval construction is

therefore consistent estimation of the matrices B∗
τ and B̃∗

τ , which is now discussed. These variance matrix

estimates may be employed in conjunction with the limiting normal distributions of the parameter estimates

to conduct inference in the usual manner.

Estimation of the variance matrices in the general case, allowing for model misspecification, is conve-

niently done by employing a plug-in approach. In this case, first let

Jτni :=

∫
γ
∇θτρτ (γ, θ̂τn)

(
1{Gi(γ) ≤ ρτ (γ, θ̂τn)} − τ

)
dQ(γ) and

Ĵτni :=

∫
γ
∇θτρτ (γ, θ̃τn)

(
1{Ĝi(γ) ≤ ρτ (γ, θ̃τn)} − τ

)
dQ(γ)
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and estimate B∗
τ by B̂τn := n−1

∑n
i=1 JτniJ

′
τni and B̃∗

τ by

B̃τn :=
1

n

n∑
i=1

ĴτniĴ
′
τni − V̂τnP̂

−1
n K̂ ′

τn − K̂τnP̂
−1
n V̂ ′

τn + K̂τnP̂
−1
n ĤnP̂

−1
n K̂ ′

τn,

where

V̂τn :=
1

n

n∑
i=1

ĴτniS
′
i and K̂τn :=

1

n

n∑
i=1

∫
γ
∇θτρτ (γ, θ̃τn)f̂γn(ρτ (γ, θ̃τn))∇′

πG̃i(γ, π̂n)dQ(γ).

Here, Ĥn, P̂n, and f̂γn(·) are consistent estimators respectively for H∗, P ∗, and fγ(·), as is assumed by the

following condition.

Assumption 11. (i) For a sequence of measurable random variables {Ĥn ∈ Rs×s}, Ĥn
P→ H∗; (ii) for a

sequence of measurable random variables {P̂n ∈ Rs×s}, P̂n
P→ P ∗; and (iii) for a sequence of measurable

functions {f̂γn(·) : R 7→ R}, f̂γn(·)
P→ fγ(·) uniformly in γ. □

Given these regularity conditions together with earlier assumptions, it is straightforward to show that V̂τn

and K̂τn are consistent for Vτ and K∗
τ =

∫
γ ∇θτρτ (γ, θ

∗
τ )fγ(ρτ (γ, θ

∗
τ ))E[∇′

πG̃i(γ, π
∗)]dQ(γ), as defined

earlier. Hence, if both n−1
∑n

i=1 JτniJ
′
τni and n−1

∑n
i=1 ĴτniĴ

′
τni are consistent for B∗

τ , it follows that B̂τn

and B̃τn are consistent for B∗
τ and B̃∗

τ , as in Theorem 5 below.

If Mτ is correctly specified, then instead of estimating Jτi and Ĵτi, the covariance matrices can be

estimated from explicit forms of the covariance kernels in the functional law, which can then be used to

estimate B0
τ and B̃0

τ . With this approach we first estimate κτ (γ, γ
′) and κ̃τ (γ, γ

′) by

κ̂τn(γ, γ
′) :=

1

n

n∑
i=1

(
1{Gi(γ) ≤ ρτ (γ, θ̂τn)} − τ

)(
1{Gi(γ

′) ≤ ρτ (γ
′, θ̂τn)} − τ

)
and

κ̃τn(γ, γ
′) :=

1

n

n∑
i=1

(
1{Ĝi(γ) ≤ ρτ (γ, θ̃τn)} − τ

)(
1{Ĝi(γ

′) ≤ ρτ (γ
′, θ̃τn)} − τ

)
.

Then, for each γ ∈ Γ, we let ζτ (γ) := E[(1{G̃i(γ, π
∗) ≤ ρτ (γ, θ

0
τ )} − τ)S′

i], which is estimated by its

sample analog

ζ̃τn(γ) :=
1

n

n∑
i=1

(1{Ĝi(γ) ≤ ρτ (γ, θ̃τn)} − τ)S′
i.

These estimators are pointwise consistent for their respective target quantities by the LLN and continuous

mapping. This property can be strengthened by applying the ULLN. Indeed, under Assumptions 1, 2, and

3, it follows that κ̂τn(·, ·) is consistent for κτ (·, ·) uniformly on Γ × Γ by the ULLN. Likewise, κ̃τn(·, ·)
and ζ̃τn(·) turn out to be consistent for κτ (·, ·) and ζτ (·), respectively under Assumptions 2, 6, 7, and 8.
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Therefore, if we let

B̂♯
τn :=

∫
γ

∫
γ′
∇θτρτ (γ, θ̂τn)κ̂τn(γ, γ

′)∇′
θτρτ (γ

′, θ̂τn)dQ(γ)dQ(γ′) and

B̃♯
τn :=

∫
γ

∫
γ′
∇θτρτ (γ, θ̃τn)κ̃τn(γ, γ

′)∇′
θτρτ (γ

′, θ̃τn)dQ(γ)dQ(γ′) + K̂τnP̂
−1
n ĤnP̂

−1
n K̂ ′

τn

−
∫
γ
∇θτρτ (γ, θ̃τn)ζ̃τn(γ)dQ(γ)P̂−1

n K̂ ′
τn − K̂τnP̂

−1
n

∫
γ
ζ̃τn(γ)

′∇′
θτρτ (γ, θ̃τn)dQ(γ)

be variance matrix estimators for B0
τ and B̃0

τ , these matrices are consistent for B0
τ and B̃0

τ . Note that B̂♯
τn

and B̃♯
τn are simply sample analogs of B0

τ and B̃0
τ , so that consistency of these estimates follows directly

from the consistency of κ̂τn(·, ·), κ̃τn(·, ·), and ζ̃τn(·). The formal result is given in the following theorem.

Theorem 5. (i) Given Assumption 1, 2, 3, (i.a) if Mτ is misspecified and Assumption 4 holds, B̂τn
P→ B∗

τ ;

and (i.b) if Mτ is correctly specified and Assumption 5 holds, B̂♯
τn

P→ B0
τ ;

(ii) Given Assumption 2, 6, 7, 8, 11, (ii.a) if Mτ is misspecified and Assumption 9 holds, B̃τn
P→ B̃∗

τ ;

(ii.b) if Mτ is correctly specified and Assumption 10 holds, B̃♯
τn

P→ B̃0
τ . □

Two remarks are in order. First, B̂τn (resp. B̃τn) is numerically identical to B̂♯
τn (resp. B̃♯

τn), but the

definition of B̂♯
τn (resp. B̃♯

τn) is conceptually different from that of B̂τn (resp. B̃τn), just as in the conceptual

difference between B∗
τ and B0

τ (resp. B̃∗
τ and B̃0

τ ). Second, estimating ζτ (·) can be further involved when the

score Si depends on the nuisance parameter estimator π∗. For such a case, we can consistently estimate ζτ (·)
by using π̂n in the construction of Si. Consistency follows by applying the continuous mapping theorem

under some mild regularity conditions.

5 Joint Estimation of Multiple Quantile Functions

The framework is now extended to allow for multiple quantile curve estimation from the same data, either

{Gi(·)}ni=1 or, in the case of nuisance effects, {Ĝi(·)}ni=1. This extension allows for joint estimation and

inference concerning quantile functions for multiple quantiles τ := (τ1, τ2, . . . , τp)
′. It is convenient to focus

on Ĝi(·) and cover the case of functional data without nuisance effects in corollaries to the development.

The multiple quantile functions are estimated using the TS(Q)FQR procedure. For each j = 1, 2, . . . , p,

suppose model Mτj is specified and the parameters θ∗τj are estimated by θ̃τjn as before, letting θ̃n :=

(θ̃′τ1n, θ̃
′
τ2n, . . . , θ̃

′
τpn)

′ be the combined vector of separate TS(Q)FQR parametric estimators. We call θ̃n
the multiple two-stage functional quantile regression (MTSFQR) estimator if, for each j = 1, 2, . . . , p, the

model Mτj is correctly specified. Otherwise, we call θ̃n the multiple two-stage quasi-functional quantile

regression (MTSQFQR) estimator. To develop MTS(Q)FQR asymptotics we define M :=
⋃p

j=1Mτj as the

multiple quantile function model and employ the following regularity conditions.
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Assumption 12. (i) For each τj ∈ {τ1, . . . , τp} and θτj ∈ Θτj , ρτj ( · , θτj ) : Γ 7→ R is measurable

−G, where Θτj is a compact and convex set in Rcτj (cτj ∈ N); (ii) for each τj ∈ {τ1, . . . , τp} and

γ ∈ Γ, ρτj (γ, · ) ∈ C(2)(Θτj ); (iii) for each τj ∈ {τ1, . . . , τp} and θτj ∈ Θτj , ρτj ( · , θτj ) ∈ Lip(Γ);

and (iv) for each τj ∈ {τ1, . . . , τp}, if we let qτj (θτj ) :=
∫
γ

∫
ξτj{g(γ) − ρτj (γ, θτj )}dP(g(γ))dQ(γ),

θ∗τj := argminθτj
qτj (θτj ) is unique and interior to Θτj .

Assumption 13. For some Mi ∈ L2(P) and M < ∞, (i) supγ |Gi(γ)| ≤ Mi; (ii) for each τℓ ∈
{τ1, . . . , τp}, sup(γ,θτℓ ) |ρτℓ(γ, θτℓ)| ≤ M ; (iii) for each τℓ ∈ {τ1, . . . , τp} and j = 1, . . . , cτℓ , sup(γ,θτℓ ) |(∂/
∂θτℓj) ρτℓ(γ, θτℓ)| ≤ M ; and (iv) for each τℓ ∈ {τ1, . . . , τp} and j, j′ = 1, . . . , cτℓ , sup(γ,θτℓ ) |(∂

2/∂θτℓj

∂θτℓj′)ρτℓ(γ, θτℓ)| ≤ M . □

Assumption 14. For some Mi ∈ L2(P) and M < ∞, (i) sup(γ,π) |G̃i(γ, π)| ≤ Mi; (ii) supj sup(γ,π) |(∂/∂
πj)G̃i(γ, π)| ≤ Mi; (iii) for each τℓ ∈ {τ1, . . . , τp}, sup(γ,θτℓ ) |ρτℓ(γ, θτℓ)| ≤ M ; (iv) for each τℓ ∈
{τ1, . . . , τp} and j = 1, . . . , cτℓ , sup(γ,θτℓ ) |(∂/∂θτℓj)ρτℓ(γ, θτℓ)| ≤ M ; (v) for each τℓ ∈ {τ1, . . . , τp}
and j, j′ = 1, . . . , cτℓ , sup(γ,θτℓ ) |(∂

2/∂θτℓj∂θτℓj′)ρτℓ(γ, θτℓ)| ≤ M ; and (vi) for each j = 1, 2, . . . , s,

E[(∂/∂πj)G̃i(·, π∗)] ∈ Lip(Γ). □

Assumption 12 extends Assumption 2 to allow for the presence of multiple quantile functions. Importantly,

the dimensions cτj of the parametric components of the individual quantile function models Mj may differ,

thereby allowing for different parametric model specifications at different quantile levels. Assumptions 13

and 14 extend Assumptions 3 and 8, ensuring that the regular bound conditions in Assumptions 3 and 8

apply to the case of multiple quantile function estimation.

5.1 Estimation under possible misspecification

Given a finite quantile number p, consistency of the full MTSQFQR estimator θ̃n follows directly from the

consistency of the individual TSQFQR estimators θ̃τjn of θ∗τj by joint convergence, so that θ̃n
P→ θ∗ :=

(θ∗′τ1 , θ
∗′
τ2 , . . . , θ

∗′
τp)

′. On the other hand, the joint limit distribution theory for θ̃n does not follow directly

from the limit theory of the individual component estimators. Joint asymptotics are obtained by working

explicitly with the full vector θ̃n and combining the individual asymptotic approximations in (4) as follows

√
n(θ̃n − θ∗) = −A∗−1 1√

n

n∑
i=1

Ĵi + oP(1), (7)

where Ĵi := [Ĵτ1i, Ĵτ2i, . . . , Ĵτpi], A
∗ := diag[A∗

τ1 , A
∗
τ2 , . . . , A

∗
τp ], and for each j = 1, 2, . . . , p, A∗

τj :=∫
γ ∇θτj

ρτj (γ, θ
∗
τj )fγ(ρτj (γ, θ

∗
τj ))∇

′
θτj

ρτj (γ, θ
∗
τj )dQ(γ) as before. Here A∗ is a c× c block diagonal square

matrix and Ĵi is a c× 1 vector, where c =
∑p

j=1 cτj .

The limit distribution of the MTSQFQR estimator is obtained by examining the limit behaviors of the

two factors in the leading term on the right side of (7). First, like the individual matrices A∗
τj , A∗ does
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not contain any stochastic components. In addition, if for each j = 1, 2, . . . , p, Aτ∗j
is positive definite,

then so is A∗ by construction. Thus, the limit distribution theory is effectively determined by the second

factor in (7). Theorem 3 establishes that for each j = 1, 2, . . . , p,
√
n(θ̂τjn − θ∗τj )

A∼ N (0, C̃∗
τj ), where

C̃∗
τj := A∗−1

τj B̃∗
τjA

∗−1
τj . Using a standard asymptotic argument for arbitrary linear combinations of all

these components to produce a multivariate CLT, it then follows that
√
n(θ̃n − θ∗)

A∼ N (0, C̃∗), where

C̃∗ := A∗−1B̃∗A∗−1. The central matrix B̃∗ in this sandwich form is a c × c matrix with submatrix in the

j-th block row and j′-th block column matrix given by B̃∗
τjτj′

, which has the form

B̃∗
τjτj′

:= B∗
τjτj′

− E[JτjiS
′
i]P

∗−1K∗′
τj′

−K∗
τjP

∗−1E[SiJ
′
τj′ i

] +K∗
τjP

∗−1H∗P ∗−1K∗′
τj′

for each j and j′ = 1, 2, . . . , p, where B∗
τjτj′

:= E[JτjiJ ′
τj′ i

], and as before, for each j = 1, 2, . . . , p,

Jτji :=
∫
γ ∇θτj

ρτj (γ, θ
∗
τj )(1{Gi(γ) ≤ ρτj (γ, θ

∗
τj )} − τj)dQ(γ). The limit distribution theory for the full

MTSQFQR estimator θ̃n is then obtained based on the following regularity conditions:

Assumption 15. (i) λmin(A
∗) > 0; (ii) λmin(L

∗) > 0; and (iii) λmin(B̃
∗) > 0, where

L∗ :=

[
H∗ V ∗′

V ∗ B∗

]
,

V ∗ := E[JiS′
i], Ji := [J ′

τ1i
, J ′

τ2i
, . . . , J ′

τpi
]′, and B∗ := E[JiJ ′

i ]. □

It is now straightforward to derive the limit distribution of the MTSQFQR estimator using (7).

Theorem 6. Given Assumptions 6, 7, 12, 14, and 15, if M is misspecified,
√
n(θ̃n − θ∗)

A∼ N (0, C̃∗). □

Several remarks are warranted concerning Theorem 6. First, Theorem 6 specializes to Theorem 3 when

p = 1 and if j = j′, B̃∗
τjτj′

is identical to B̃∗
τj in Section 4. Second, θ̃n can be obtained by minimiz-

ing a weighted sum of the check functions. That is, if {wj} is a set of strictly positive weights such that∑p
j=1wj ≡ 1, θ̃n := argminθ∈⊗p

j=1Θτj
q̂n(θ), where q̂n(θ) :=

∑p
j=1wj q̂τjn(θτj ). Given that θτj is asso-

ciated with only q̂τjn(·), minimizing q̂n(·) is equivalent to minimizing the individual q̂τjn(·) and collecting

the individual estimators to form θ̃n. Third, if the functional data do not involve nuisance effects, we can

estimate the unknown parameter θ∗ by θ̂n := argminθ∈⊗p
j=1Θτj

qn(θ), where qn(θ) :=
∑p

j=1wjqτjn(θτj )

for the same weights {wj}. By applying this approach to derive the limit distribution of θ̃n, it follows that
√
n(θ̂n − θ∗)

A∼ N (0, A∗−1B∗A∗−1), where B∗ is a c × c matrix whose submatrix in the j-th block row

and j′-th block column is B∗
τjτj′

.

5.2 Estimation under correct specification

Theorem 6 may be used to deliver the limit theory of the MTSFQR estimator. But it is also useful to

develop the asymptotics using functional limit law arguments. For this purpose we define some notation.
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Let ∇θρ(γ, θ
0) := diag[∇θτ1

ρτ1(γ, θ
0
τ1),∇θτ2

ρτ2(γ, θ
0
τ2), . . . ,∇θτpρτp(γ, θ

0
τp)] and

1{Ĝi(γ) ≤ ρ(γ, θ0)} := [1{Ĝi(γ) ≤ ρτ1(γ, θ
0
τ1)}, · · · ,1{Ĝi(γ) ≤ ρτp(γ, θ

0
τp)}]

′.

These quantities are defined with some abuse of notation: ∇θρ(γ, θ
0) is a c× p block diagonal matrix with

cτj × 1 column vectors in its diagonal blocks instead of a column vector; and 1{Ĝi(γ) ≤ ρ(γ, θ0)} is a

p× 1 column vector instead of a scalar.

The joint limit distribution of the MTSFQR estimator is efficiently obtained by collecting the asymptotic

approximations in (4) into a vector. Specifically, (4) can be rewritten as

√
n(θ̃n − θ0) = −A0−1

(∫
γ
∇θρ(γ, θ

0)
1√
n

n∑
i=1

(
1{Ĝi(γ) ≤ ρ(γ, θ0)} − τ

)
dQ(γ)

)
+ oP(1), (8)

where A0 := diag[A0
τ1 , A

0
τ2 , . . . , A

0
τp ]. So the limit distribution of the MTSFQR estimator is determined by

the two factors in the leading term on the right side of (8). The matrix A0 is square and nonrandom just

as A∗. It follows that the second factor is the main determinant of the limit distribution. Lemma 3 shows

that each component in n−1/2
∑n

i=1(1{Ĝi(·) ≤ ρ(·, θ0)} − τ) weakly converges to a Gaussian stochastic

process and the following lemma proves that the full vector converges weakly to a vector Gaussian process.

Lemma 4. Given Assumptions 6, 7, 12, and 14, n−1/2
∑n

i=1(1{Ĝi(·) ≤ ρ(·, θ0)} − τ) ⇒ G̃(·) :=

[G̃τ1(·), G̃τ2(·), · · · , G̃τp(·)]′, where G̃(·) is a mean-zero Gaussian process such that for j and j′ = 1, 2, . . . , p,

and γ and γ′ ∈ Γ, the covariance kernel is

E[G̃τj (γ)G̃τj′ (γ
′)] = κ̃τjτj′ (γ, γ

′)

:= κτjτj′ (γ, γ
′)− fγ(ρτj (γ, θ

0
τj ))E[∇

′
πG̃i(γ, π

∗)]P ∗−1E[Si(1{G̃i(γ
′, π∗) ≤ ρτj′ (γ

′, θ0τj′ )} − τj′)]

− fγ′(ρτj′ (γ
′, θ0τj′ ))E[∇

′
πG̃i(γ

′, π∗)]P ∗−1E[Si(1{G̃i(γ, π
∗) ≤ ρτj (γ, θ

0
τj )} − τj)]

+ fγ(ρτj (γ, θ
0
τj ))E[∇

′
πG̃i(γ, π

∗)]P ∗−1H∗P ∗−1E[∇πG̃i(γ
′, π∗)]fγ′(ρτj′ (γ, θ

0
τj′
)),

and κτjτj′ (γ, γ
′) := E[1{G̃i(γ, π

∗) ≤ ρτj (γ, θ
0
τj )}1{G̃i(γ

′, π∗) ≤ ρτj′ (γ
′, θ0τj′ )}]− τjτj′ . □

Lemma 4 extends Lemma 3 and specializes to it when p = 1. Further, when j = j′, κτjτj′ (·, ·) and

κ̃τjτj′ (·, ·) are identical to κτj (·, ·) and κ̃τj (·, ·). Lemma 4 is proved by showing that the Cramér-Wold device

in Wooldridge and White (1988, proposition 4.1) holds for G̃(·), which leads directly to the multivariate

functional limit law and the convergence

√
n(θ̃n − θ0) ⇒ −A0−1

∫
γ
∇θρ(γ, θ

0)G̃(γ)dQ(γ) ∼ N (0, C̃0)

follows by continuous mapping, where C̃0 := A0−1B̃0A0−1 and B̃0 is a c× c matrix with j-th block row
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and j′-th block column matrix

B̃0
τjτj′

:=

∫
γ

∫
γ′
∇θτj

ρτj (γ, θ
0
τj )κ̃τjτj′ (γ, γ

′)∇′
θτj′

ρτj′ (γ, θ
0
τj′
)dQ(γ)dQ(γ′).

The limit distribution of the MTSFQR estimator is obtained under the following regularity conditions.

Assumption 16. (i) λmin(A
0) > 0; (ii) λmin(L

0) > 0; and (iii) λmin(B̃
0) > 0, where

L0 :=

[
H∗ V 0 ′

V 0 B0

]
,

V 0 := [V 0′
τ1 , V

0′
τ2 , . . . , V

0′
τp ]

′, B0 is a c× c matrix such that for each j and j′ = 1, 2, . . . p, its j-th block row

and j′-th block column matrix is B0
τjτj′

:=
∫
γ′

∫
γ ∇θρτj (γ, θ

0
τj )κτjτj′ (γ, γ

′)∇′
θ ρτj′ (γ̃, θ

0
τj′
)dQ(γ)dQ(γ′),

and B̃0 is defined as just above this assumption. □

By Assumption 16, Si,
∫
γ ∇θρ(γ, θ

0)(1{G̃i(γ, π
∗) ≤ ρ(γ, θ0)} − τ)dQ(γ) and

∫
γ ∇θρ(γ, θ

0)(1{Ĝi(γ) ≤
ρ(γ, θ0)}−τ)dQ(γ) have positive definite variance matrices. In the diagonal block with j = j′ the matrices

B0
τjτj′

and B̃0
τjτj′

are identical to B0
τj and B̃0

τj as defined earlier in Section 3.2, Assumptions 5 and 10. Under

Assumption 16 and earlier conditions, the limit distribution of the MTSFQR estimator is non-degenerate and

given in the following theorem.

Theorem 7. Under Assumptions 6, 7, 12, 14, and 16, if M is correctly specified,
√
n(θ̃n−θ0)

A∼ N (0, C̃0).

□

The limit distribution in Theorem 7 relates closely to the misspecifed case. Specifically, when θ∗ = θ0,

we have B̃∗ = B̃0 and A∗ = A0, so that C̃∗ = C̃0. Further, when there are no nuisance effects, the limit

distribution of a multiple quantile version of the FQR estimator studied in Section 2.2 can be deduced from

Theorem 7. In particular, by setting Si ≡ 0 in the definition of κ̃τjτj′ (γ, γ
′), which leads to κ̃τjτj′ (·, ·) =

κτjτj′ (·, ·) and B̃0 = B0, we have
√
n(θ̂n−θ0)

A∼ N (0, C0), where C0 := A0−1B0A0−1. The c×c matrix

B0 is defined in Assumption 16.

5.3 Variance matrix estimation

The limit theory of Sections 5.1 and 5.2 enables hypothesis testing on the unknown model parameters once

the relevant asymptotic variance matrices are estimated. The approach follows Section 4 closely and is only

briefly detailed here.

If the model M is misspecified, let Jni := [J ′
τ1ni

, J ′
τ2ni

, . . . , J ′
τpni

] and Ĵni := [Ĵ ′
τ1ni

, Ĵ ′
τ2ni

, . . . , Ĵ ′
τpni

].

Define the estimates

B̂n :=
1

n

n∑
i=1

JniJ
′
ni and B̃n :=

1

n

n∑
i=1

ĴniĴ
′
ni − V̂nP̂

−1
n K̂ ′

n − K̂nP̂
−1
n V̂ ′

n + K̂nP̂
−1
n ĤnP̂

−1
n K̂ ′

n,
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where

V̂n :=
1

n

n∑
i=1

ĴniS
′
i, K̂n :=

1

n

n∑
i=1

∫
γ
∇θρ(γ, θ̃n)f̂γn(ρ(γ, θ̃n))∇′

πG̃i(γ, π̂n)dQ(γ),

and f̂γn(ρ(γ, θ̃n)) := diag[f̂γn(ρτ1(γ, θ̃τ1n)) · Icτ1 , . . . , f̂γn(ρτp(γ, θ̃τpn)) · Icτp ]. It immediately follows

that B̂n
P→ B∗ under Assumptions 1, 12, 13, and 15 by applying Theorem 5; and similarly B̃n

P→ B̃∗ under

Assumptions 1, 12, 13, and 16.

If M is correctly specified, the variance matrices B0 and B̃0 can be estimated by first estimating the

unknown covariance kernel functions κ(·, ·) and κ̃(·, ·). Let

κ̂n(γ, γ
′) :=

1

n

n∑
i=1

(
1{Gi(γ) ≤ ρ(γ, θ̂n)} − τ

)(
1{Gi(γ

′) ≤ ρ(γ′, θ̂n)} − τ
)
,

κ̃n(γ, γ
′) :=

1

n

n∑
i=1

(
1{Ĝi(γ) ≤ ρ(γ, θ̃n)} − τ

)(
1{Ĝi(γ

′) ≤ ρ(γ′, θ̃n)} − τ
)
,

and ζ̃n(γ) := n−1
∑n

i=1(1{Ĝi(γ) ≤ ρ(γ, θ̃n)} − τ)S′
i. Note that κ̂n(·, ·) and κ̃n(·, ·) are p × p matrices

of functions, and they are consistent for κ(·, ·) uniformly on Γ × Γ under mild regularity conditions as in

the univariate case, where κ(·, ·) is a p × p matrix with j-th row and j′-th column blocks being κτjτj′ (·, ·).
Likewise, ζ̃n(·) turns out to be consistent for ζ(·) := E[(1{G̃i(·, π∗) ≤ ρ(·, θ∗)}− τ)S′

i] uniformly on Γ by

applying the ULLN. Using κ̂n(·, ·) and κ̃n(·, ·), we estimate B0 and B̃0 by plug-in, giving

B̂♯
n :=

∫
γ

∫
γ′
∇θρ(γ, θ̂n)κ̂n(γ, γ

′)∇′
θρ(γ

′, θ̂n)dQ(γ)dQ(γ′) and

B̃♯
n :=

∫
γ

∫
γ′
∇θρ(γ, θ̃n)κ̃n(γ, γ

′)∇′
θρ(γ

′, θ̃n)dQ(γ)dQ(γ′)−
∫
γ
∇θρ(γ, θ̃n)ζ̃n(γ)dQ(γ)P̂−1

n K̂ ′
n

−K̂nP̂
−1
n

∫
γ
ζ̃n(γ)

′∇′
θρ(γ, θ̃n)dQ(γ) + K̂nP̂

−1
n ĤnP̂

−1
n K̂ ′

n.

B̂♯
n and B̃♯

n are c × c matrices with (j, j′) block submatrices that estimate B0
τjτj′

and B̃0
τjτj′

, for j and

j′ = 1, 2, . . . , p. It immediately follows that B̂♯
n

P→ B0 under Assumptions 1, 12, 13, and 15 by applying

Theorem 5. Similarly B̃♯
n

P→ B̃0 under Assumptions 1, 12, 13, and 16. The result is given in the following

Corollary whose proof is almost identical to that of Theorem 5 and is omitted.

Corollary 1. (i) Given Assumption 1, 12, and 13, (i.a) if M is misspecified and Assumption 15 holds,

B̂n
P→ B∗; (i.b) if M is correctly specified and Assumption 16 holds, B̂♯

n
P→ B0;

(ii) Given Assumption 6, 7, 8, 11, 12, and 14, (ii.a) if M is misspecified and Assumption 15 holds,

B̃n
P→ B̃∗; (ii.b) if Mτ is correctly specified and Assumption 16 holds, B̃♯

n
P→ B̃0. □
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6 Multiple Quantile Function Inference

Once consistent estimates of the relevant variance matrix estimates are obtained, tests and confidence inter-

vals may be conducted in the usual manner making use of the limit distribution theory for multiple quantile

estimates. Test procedures on the model parameters have the same basis irrespective of whether M is cor-

rectly specified. So the following development provides test methodology for the misspecified model case.

Suppose interest centers on the following null and alternative hypotheses

Ho : R(θ∗) = 0 versus Ha : R(θ∗) ̸= 0, (9)

where R : ⊗p
j=1Θτj 7→ Rr (r ∈ N) is continuously differentiable such that for each j = 1, 2, . . . , p,

rτj := rank[∇′
θτj

R(θ∗)] ≤ cτj and r = rank[∇′
θR(θ∗)].

Inference concerning hypotheses such as (9) on the unknown parameters of multiple quantile functions

can be made in parallel to the standard testing procedures based on maximum likelihood (ML) estimation.

First, define the following constrained estimators of the parameters

θ̄n := argmin
θ∈⊗p

j=1Θτj

qn(θ) such that R(θ) = 0 and θ̈n := argmin
θ∈⊗p

j=1Θτj

q̂n(θ) such that R(θ) = 0.

We call θ̄n the constrained multiple quasi-functional quantile regression (CMQFQR) estimator and θ̈n the

constrained multiple two-stage quasi-functional quantile regression (CMTSQFQR) estimator. These esti-

mators involve constrained Lagrangian estimation, analogous to constrained ML estimation. Although the

functions qn(·) and q̂n(·) are not continuously differentiable, they are asymptotically differentiable, thereby

enabling development of a suitable limit theory for testing and inference. The following additional regularity

conditions are used to to derive the limit distributions of θ̄n and θ̈n.

Assumption 17. (i) λmin(A
∗) > 0; and (ii) λmin(B

∗) > 0. □

Assumption 18. (i) R : Θ 7→ Rr is in C(1)(Θ) with r ∈ N and for each j = 1, 2, . . . , p, rτj ≤ cτj ; and (ii)

D(θ∗) := ∇′
θR(θ∗) ∈ Rr×c has full rank r where ∇θ is the c× 1 gradient operator. □

Here if M is correctly specified, then the quantile functions cannot cross, i.e., there is no probability of

crossing (see Phillips, 2015). This implies that the null condition becomes valid when it is consistent with

the crossing condition. For example, if ρ(γ, θ0τ ) = θ01τ + θ02τγ is a correct quantile function and τ1 < τ2,

then for each γ, it has to follow that θ01τ1 + θ02τ1γ < θ01τ2 + θ02τ2γ. If a null hypothesis is stated that violates

this inequality, the null can be trivially rejected.

The limit distributions of the CMQFQR and CMTSQFQR estimators are given in the following lemma.

Lemma 5. (i) Given Assumptions 1, 12, 13, 17, and 18,
√
n(θ̄n−θ∗)+

√
n(ΩA∗)−1D∗′[D∗(ΩA∗)−1D∗′]−1

R(θ∗)
A∼ N (0, {I + (ΩA∗)−1D∗′[D∗(ΩA∗)−1D∗′]−1D∗} C∗{I +D∗′[D∗(ΩA∗)−1D∗′]−1D∗(ΩA∗)−1}),

where Ω := diag[ω1Ic1 , ω2Ic2 , . . . , ωpIcp ], D
∗ := ∇′

θR(θ∗), and C∗ := A∗−1B∗A∗−1; and
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(ii) Given Assumptions 6, 7, 12, 14, 15, and 18,
√
n(θ̈n−θ∗)+

√
n(ΩA∗)−1D∗′[D∗(ΩA∗)−1D∗′]−1R(θ∗)

A∼ N (0, {I + (ΩA∗)−1D∗′[D∗(ΩA∗)−1D∗′]−1D∗}C̃∗{I +D∗′[D∗(ΩA∗)−1D∗′]−1D∗(ΩA∗)−1}). □

Under Ho
√
n(θ̄n − θ∗) and

√
n(θ̈n − θ∗) are asymptotically distributed and centred at zero, whereas

they are not bounded under Ha. They are therefore useful in forming the tests discussed below. Note that

the CMQFQR and CMTSQFQR limit distributions are influenced by the selection of the weights Ω, with

different distributions for different Ω.

Tests are formed using standard Wald, LM, and LR test principles. The Wald tests use the unconstrained

MQFQR and MTSQFQR estimators giving

W̄n := nR(θ̂n)
′{D̂nĈnD̂

′
n}−1R(θ̂n) and Ẅn := nR(θ̃n)

′{D̃nC̃nD̃
′
n}−1R(θ̃n),

where D̂n := ∇′
θR(θ̂n), Ĉn := Â−1

n B̂nÂ
−1
n , D̃n := ∇′

θR(θ̃n), and C̃n := Ã−1
n B̃nÃ

−1
n . Here, we let

Ân := diag[Âτ1n, Âτ2n, . . . , Âτpn], Ãn := diag[Ãτ1n, Ãτ2n, . . . , Ãτpn], and for each j = 1, 2, . . . , p,

Âτjn :=

∫
γ
∇θτρτ (γ, θ̂τjn)f̂γn(ρτ (γ, θ̂τjn))∇′

θτρτ (γ, θ̂τjn)dQ(γ) and

Ãτjn :=

∫
γ
∇θτρτ (γ, θ̃τjn)f̂γn(ρτ (γ, θ̃τjn))∇′

θτρτ (γ, θ̃τjn)dQ(γ).

Under Assumption 11 and given consistency of θ̂n and θ̃n for θ∗, both Ân and Ãn are consistent for A∗. The

Wald tests assess the magnitudes of R(θ̂n) and R(θ̃n) in suitable metrics and unless R(θ∗) = 0, the tests

are not bounded in probability.

The LM tests are constructed as

¯LMn := nQ̄′
nĀ

−1
n D̄′

n{D̄nC̄nD̄
′
n}−1D̄nĀ

−1
n Q̄n and ¨LMn := nQ̈′

nÄ
−1
n D̈′

n{D̈nC̈nD̈
′
n}−1D̈nÄ

−1
n Q̈n,

where we let D̄n := ∇′
θR(θ̄n), C̄n := Ā−1

n B̄nĀ
−1
n , D̈n := ∇′

θR(θ̈n), C̈n := Ä−1
n B̈nÄ

−1
n , B̄n :=

n−1
∑n

i=1 J̄niJ̄
′
ni and B̈n := n−1

∑n
i=1 J̈niJ̈

′
ni with J̄ni := [J̄ ′

τ1ni
, J̄ ′

τ2ni
, . . . , J̄ ′

τpni
], J̈ni := [J̈ ′

τ1ni
, J̈ ′

τ2ni
,

. . . , J̈ ′
τpni

], Q̄n := n−1
∑n

i=1 J̄ni, Q̈n := n−1
∑n

i=1 J̈ni,

J̄τjni :=

∫
γ
∇θτj

ρτj (γ, θ̄τn)
(
1{Gi(γ) ≤ ρτj (γ, θ̄τjn)} − τ

)
dQ(γ), and

J̈τni :=

∫
γ
∇θτj

ρτj (γ, θ̈τjn)(1{G̈i(γ) ≤ ρτj (γ, θ̈τjn)} − τ)dQ(γ).

Further, define Ān := diag[Āτ1n, Āτ2n, . . . , Āτpn], Än := diag[Äτ1n, Äτ2n, . . . , Äτpn], where for each
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j = 1, 2, . . . , p,

Āτjn :=

∫
γ
∇θτρτ (γ, θ̄τjn)f̂γn(ρτ (γ, θ̄τjn))∇′

θτρτ (γ, θ̄τjn)dQ(γ) and

Äτjn :=

∫
γ
∇θτρτ (γ, θ̈τjn)f̂γn(ρτ (γ, θ̈τjn))∇′

θτρτ (γ, θ̈τjn)dQ(γ).

Given Assumption 11 and the consistency of θ̄n and θ̈n for θ∗ under the null, it follows that both Ān and

Än are consistent for A∗ under the null. Note that J̄ni and J̈ni are defined in parallel to Ĵni and J̃ni. The

only difference is that θ̂n and θ̃n in Ĵni and J̃ni are replaced by θ̄n and θ̈n. Although Lemma 5 implies

that the limit distributions of
√
n(θ̄n − θ∗) and

√
n(θ̈n − θ∗) are influenced by the selection of Ω, the

LM test statistics are defined without direct association with Ω. If Ho holds, both CMQFQR and CMTSQR

estimators converge to θ∗, so that both Q̄n and Q̈n converge to zero. Otherwise, neither Q̄n nor Q̈n converges

to zero, thereby giving the LM test discriminatory power under Ha.

To construct the LR test the quantile functions are estimated under both hypotheses. Under the null Ho,

θ̄n and θ̂n (resp. θ̈n and θ̃n) both converge to θ∗, so that the distance between qn(θ̄n) and qn(θ̂n) (resp.

q̂n(θ̈n) and q̂n(θ̃n)) converges to zero. But neither θ̄n nor θ̈n converges to θ∗ under Ha, so that the distance

between qn(θ̄n) and qn(θ̂n) and the distance between q̂n(θ̈n) and q̂n(θ̃n) is non zero asymptotically. These

distances then form the basis of the following quasi-LR (QLR) tests

¯QLRn := 2n{qn(θ̄n)− qn(θ̂n)} and ¨QLRn := 2n{q̂n(θ̈n)− q̂n(θ̃n)}.

The QLR statistics are nonnegative because both θ̄n and θ̈n minimize the objective functions subject to the

restrictions R(θ) = 0, whereas both θ̂n and θ̃n minimize the same objective functions without constraint.

The limit distribution theory of the three tests under Ho and Ha are given in the following result.

Theorem 8. For any sequence cn such that cn = o(n),

(i) If Assumptions 1, 11, 12, 13, 17, and 18 hold, (i.a) W̄n
A∼ X 2

r under Ho and limn→∞ P(W̄n ≥
cn) = 1 under Ha; (i.b) ¯LMn

A∼ X 2
r under Ho and limn→∞ P( ¯LMn ≥ cn) = 1 under Ha; (i.c)

¯QLRn
A∼ W ′(D∗(ΩA∗)−1D∗′)−1W under Ho and limn→∞ P( ¯QLRn ≥ cn) = 1 under Ha, where

W ∼ N (0, D∗C∗D∗′);

(ii) If Assumptions 6, 7, 11, 12, 14, 15, and 18 hold, (ii.a) Ẅn
A∼ X 2

r under Ho and limn→∞ P(Ẅn ≥
cn) = 1 under Ha; (ii.b) ¨LMn

A∼ X 2
r under Ho and limn→∞ P( ¨LMn ≥ cn) = 1 under Ha; (iii.c)

¨QLRn
A∼ W̃ ′(D∗(ΩA∗)−1D∗′)−1W̃ under Ho and limn→∞ P( ¨QLRn ≥ cn) = 1 under Ha, where W̃ ∼

N (0, D∗C̃∗D∗′). □

According to Theorem 8, the Wald, LM, and QLR statistics are each bounded in probability under Ho

but unbounded under Ha, so that the tests are consistent under the alternative hypothesis. The null limit

distributions of the Wald and LM stastistics are equivalent and chi-squared with degrees of freedom given
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by the number of restrictions. The null limit distribution of the QLR test is given by a quadratic form in

Gaussian variates, and thus a weighted sum of chi-square distributions. The limit theory in this case is

influenced by the selection of Ω under both Ho and Ha. When proving Theorem 8, we focus on the proof of

Theorem 8 (ii), because the proof of Theorem 8 (i) is almost identical to that for Theorem 8 (ii).

7 Simulations

Simulations were conducted to assess the finite sample performance of FQR estimation and inference in

relation to the asymptotic theory or and affirm the theoretical results in the earlier sections. In the following

experiments, functional data were generated according to the regularity conditions in Section 6.

Let {Gi : Γ 7→ R : i = 1, 2, . . . , n} be data of iid functional observations, where Gi(γ) := Xi +Xiγ,

Xi = Zi−1/2, Zi ∼iid U [0, 1], and γ ∈ Γ := [1/2, 1], so that for each γ, Gi(γ) ∼ U [−(1+γ)/2, (1+γ)/2].

Here, Gi(·) is viewed as a continuous functional observation with intercept Xi and linear coefficient Xi.

Accordingly, for each τ ∈ (0, 1), the quantile function of Gi(·) is obtained as (τ − 1/2) + (τ − 1/2)γ.

Next suppose that the following linear model is specified for the quantile function of Gi(·): for each

τ ∈ (0, 1),

Mτ := {ρτ (γ, θτ ) := θτ + θτγ, θτ ∈ Θ := [−1/2, 1/2]}. (10)

Note that Mτ is correctly specified for the quantile function of Gi(·) and setting θ∗τ = (τ − 1/2), ρτ (·, θ∗τ )
is identical to the quantile function of Gi(·).

With this DGP and modeling framework the simulation plan is as follows. First the unknown parameters

are estimated by minimizing the sample average of the check functions. From the definition of the check

function, we have for each i∫
Γ
ξτ (Gi(γ)− ρτ (γ, θτ ))dγ =

∫
Γ
τ(Gi(γ)− ρτ (γ, θτ ))− (Gi(γ)− ρτ (γ, θτ )1{Gi(γ) ≥ ρτ (γ, θτ )}dγ,

and the M(Q)FQR estimator is obtained by minimizing qn(·), where for each θ := (θτ1 , θτ2) with (τ1, τ2) =

(1/3, 2/3), qn(θ) := 1
2qτ1n(θτ1) +

1
2qτ2n(θτ2), and for each τj ,

qτjn(θτj ) :=

∫
γ

1

n

n∑
i=1

ξτj (Gi(γ)− ρτj (γ, θτj ))dγ.

The adjunct probability measure Q(·) is assumed to be the uniform distribution on Γ, and we let ω1 = ω2 =

1/2. The MQFQR estimator θ̂n := (θ̂τ1n, θ̂τ2n) is obtained by a grid search in which Θ is partitioned into

an equispaced grid of distance 1/250 and θ̂n is chosen as the parameter value that minimizes qn(·) on this

grid.

Wald, LM, and QLR tests are constructed for the following hypotheses: Ho :
[
θ∗τ1 , θ

∗
τ2

]′
= r and
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Ha :
[
θ∗τ1 , θ

∗
τ2

]′ ̸= r, where r := (τ1 − 1
2 , τ2 −

1
2)

′. The test statistics are

W̄n = n(θ̂n−r)′Ĉ−1
n (θ̂n−r), ¯LMn = nQ̄′

nA
∗−1C̄−1

n A∗−1Q̄n, and ¯QLRn = 2n{qn(θ̄n)−qn(θ̂n)},

where Ĉn := A∗−1B̂nA
∗−1, C̄n := A∗−1B̄nA

∗−1, θ̄n = r, and A∗ := diag[A∗
τ1 , A

∗
τ2 ] = diag[7/8, 7/8]

with

Ĵτjni :=

∫
γ
(1 + γ)(1{Gi(γ) ≤ ρτj (γ, θ̂τjn)} − τj)dγ and

J̄τjni :=

∫
γ
(1 + γ)(1{Gi(γ) ≤ ρτj (γ, θ̄τjn)} − τj)dγ,

for each j = 1, 2. In this calculation A∗ is computed by assuming that the density function of Gi(γ) is

known. That is, from the definition of A∗
τj , it follows that A∗

τj =
∫
γ(1+ γ)2fγ(ρτj (γ, θ

∗
τj ))dγ, and the DGP

condition on Gi(γ) implies that fγ(ρτj (γ, θ
∗
τj )) = 1/(1 + γ). The density function fγ(ρτj (γ, θ

∗
τj )) can be

straightforwardly estimated in practice for given τ by kernel density estimation. For the simulation we use

a Gaussian kernel with Scott’s rule of thumb for the bandwidth and further estimate A∗
τj by numerically

integrating (1 + γ)2f̂γ(ρτj (γ, θ̂τjn)) with respect to γ.

Power is analyzed by modifying the DGP. Using the same definition of Gi(γ), viz., Gi(γ) = Xi +Xiγ,

let

Xi := 1{Wi > α/
√
n}Zi + 1{Wi ≤ α/

√
n}Z1/2

i − 1

2
,

where Wi ∼iid U [0, 1]. When α = 0, the functional observation Gi(·) follows the same probability law as

in the earlier DGP. But when α =
√
n the probability law of Gi(·) differs from the earlier DGP and follows

a fixed alternative Ha. Further, setting a fixed α > 0 produces a Pitman-type local alternative for examining

the local power of the three tests.

Simulations are conducted according to the above scheme with 5,000 replications under the null, al-

ternative, and local alternative hypotheses. The results are reported in Table 1. The table has three panels

giving the findings obtained under each hypothesis, which are summarized as follows.

First, null behavior of the three tests is generally well approximated by the limit distribution, which

in this case is χ2
2 under the null, corroborating Theorem 8 (i). When the sample size is small, the null

distribution of the Wald test statistic differs slightly from the asymptotic but the differences disappear as

the sample size increases. For sample sizes greater than 100, the null limit distribution provides a good

approximation in all cases, with the LM and QLR test results showing the best conformity to the asymptotic

distribution.

Second, power properties are studied by letting α =
√
n. As the second panel of Table 1 shows, all three

tests have increasing power as the sample size increases with empirical rejection rates rapidly approaching

100%, corroborating the asymptotic theory in Theorem 8 (ii). Notably, the finite sample power of the QLR

test statistic exceeds that of the other two test statistics.
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Local power properties are studied with α = 5 and are shown in the third panel of Table 1. As the sample

size increases, the empirical rejection rates of the three tests all converge to levels between the nominal size

and 100%, showing evidence of stable local power. Again, the local power of the QLR test exceeds that of

the other tests. Both Wald and LM tests exhibit similar local power patterns.

8 Empirical Application

This section reports an application of functional quantile methodology to study lifetime log income paths

(LIPs). Specific attention is given to analyzing empirical differences in the income paths for different gen-

ders and education levels. The LIP quantile curves are parameterized as polynomial functions. In previous

work Cho, Phillips, and Seo (2022) estimated conditional mean functions of the LIPs using the functional

data classified by gender and education levels, drawing inferences about the gaps in these mean functions.

The present work extends the scope of that analysis by examining the nature of the discrepancy in the

quantile function curves, as estimated using the (Q)FQR techniques developed in the present paper.

In a similar context, Garcı́a, Hernández, and López-Nicolás (2001), Sakellariou (2004a,b), Gardeazabal

and Ugidos (2005), and Nicodemo (2009) studied gender gaps in various countries by employing standard

quantile regression methods. Unlike those studies, functional data analysis is used here to explore the nature

of gaps in the full income paths. The lifetime incomes of individuals are tracked over their careers and

used as functional observations given their individual characteristics of gender and educational background.

This methodology has the advantage that it considers full career income paths with their temporal and

(persistent) dependence structures embodied in the observations, thereby enabling inference about a cross

section of lifetime income paths without the complications of addressing potential complications in the

internal temporal dynamics of those curves.

Data is drawn from the Continuous Work History Sample (CWHS) in the US. The same data set was

used in Cho, Phillips, and Seo (2022) and contains 39 years of annual labor income before taxes of full-time

U.S. white male and female workers born between 1960 and 1962. We divide the entire sample into different

groups based on gender and education levels. Four education levels are considered: no college education,

bachelor degree, master degree, and doctoral degree. According to this subdivision, the sample contains 673,

2,828, 539, and 323 individual income paths for males, and 837, 1,624, 469, and 418 individual income paths

for females.

Data analysis is performed for two career paths, first over the full 0–40 years of work experience and

second over the 10–40 year cycle of work experience. In each case, the study examines how gender and

education level affect the income paths. This division in the analysis makes allowance for the fact that job

mobility is typically higher in the first 10 years of work experience, as discovered in the early nonlinear re-

gression study of Mincer and Jovanovic (1981) which gave empirical evidence of differences in job mobility

during the first 10 years of work experience and showed that early career profiles are not necessarily good
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predictors of longer run difference in earnings. Huizinga (1990) and Light and Ureta (1995) provide similar

supportive evidence of these differences.

Polynomial function specifications have been widely used to study the shape of lifetime income paths.

The quadratic specification of Mincer (1958, 1974) has been the most popular specification used to model

earnings over work experience (Bhuller, Mogstad, and Salvanes, 2017; Barth, Davis, and Freeman, 2018;

Magnac, Pistolesi, and Roux, 2018). But Katz and Murphy (1992), Autor, Katz, and Krueger (1998),

and Lemieux (2006) adopted quartic specifications in their empirical work and Cho and Phillips (2018)

developed sequential testing methods to assess evidence for different functional form specifications of the

wage equation with respect to work experience years. The present study uses quadratic, cubic, and quartic

models in the empirical application.

8.1 Inference on income paths over full lifetime experience

Income profiles are first analyzed over the entire career, taken as work experience from 0 to 40 years. The

general quartic model is specified as

ρτ (γ, θτ1, θτ2, θτ3, θτ4, θτ5) = θτ1 + θτ2γ + θτ3γ
2 + θτ4γ

3 + θτ5γ
4.

When θτ5 = 0 the model is cubic, and if θτ4 = θτ5 = 0 the specification is quadratic. For curve estimation

the adjunct probability measure Q is set to be uniform on Γ, so that equal chances are allocated to each γ

for possible violation of the null. The probability density function fγ(·) is estimated nonparametrically by

kernel density estimation using a Gaussian kernel with Silverman’s rule of thumb for the bandwidth setting.

Estimated plots of ρτ (·) are provided in the Online Supplement using the functional observations classified

by gender and education, along with the estimated errors measured by the quantity qτn(θ̂τ ), which captures

the value of the criterion function (2) at the estimate θ̂τ .

To infer possible gender effects a dummy variable di is introduced to the fitted model with di = 1 for

female and di = 0 for male. Parameter setting vectors for male and female are θMτ and θFτ : for the quartic

model θMτ =
(
θMτ1, θ

M
τ2, θ

M
τ3, θ

M
τ4, θ

M
τ5

)′ and θFτ =
(
θFτ1, θ

F
τ2, θ

F
τ3, θ

F
τ4, θ

F
τ5

)′; then (θMτ5, θ
F
τ5) are set to zero

for the cubic model; and (θMτ4 , θFτ4; θFτ5, θMτ5) are set to zero for the quadratic model. So the equations for

the male and female group LIPs are specified as ρMτ (γ, θMτ ) = θMτ1 + θMτ2γ + θMτ3γ
2 + θMτ4γ

3 + θMτ5γ
4 and

ρFτ (γ, θ
F
τ ) = θFτ1 + θFτ2γ + θFτ3γ

2 + θFτ4γ
3 + θFτ5γ

4, which are written in combined form as

ρτ (γ, θ
M
τ , θFτ ) = ρFτ (γ, θ

F
τ )di + ρMτ (γ, θMτ )(1− di),

with di = 1 for female; and di = 0, otherwise. A primary null of interest is the gender hypothesis Ho :

θF∗
τ = θM∗

τ . Failure to reject Ho provides evidence that the lifetime income paths do not differ significantly

between genders.

Tables 2 and 3 summarize the inferential results for the gender hypothesis on income. First, the LIPs
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differ significantly between genders in groups with college education. At both 1% and 5% levels the null

of equivalence in the LIPs is rejected by the most tests. Several factors may influence these differences

in the LIP. For instance, job flexibility and stability may be more important factors for females, whereas a

higher emphasis may be placed on earnings for males, as Wiswall and Zafar (2017) demonstrate in their

empirical study. Second, differences in the LIPs are less evident in the group without college education,

although the results depend on the quantile τ . Specifically. when τ = 0.25, the difference in the LIPs is

significant for both Wald and LM tests, but not statistically significant for the QLR test at 1% and 5% levels.

At quantile τ = 0.75, the null hypothesis is not rejected for most specifications, implying that the LIPs

of the workers earning higher income without college education tend to be closer across genders than for

workers earning lower incomes. Third, increases in quantile τ leads to a reversal of inferences between the

Master’s and Doctoral groups. When τ = 0.25, test outcomes for the Doctoral group exceed those for the

Master’s group under quadratic, cubic, and quartic specifications; but for quantile τ = 0.75, test outcomes

for the Master’s group exceed those for the Doctoral group. This result suggests that the gender gap in the

LIPs of the Doctoral group tends to shrink at higher income and education levels whereas the gender gap of

the Master group expands.

We next examine the education effect on the quantile functions of the LIP within the same gender group.

For this, we make pairwise comparisons between the following groups: Bachelor’s degree vs. no college

education; Bachelor’s vs. Master’s level education, and Master’s vs. Doctoral degrees. Tables 4 and 5

contain the test outcomes for τ = 0.25, 0.5, and 0.75. Table 4 reports the test results using the samples of

the original LIPs, while Table 5 is constructed using rescaled samples in which each individual’s income

path is scaled by the individual’s integrated log income path over the work experience years. As expected,

for the male and female groups, we find highly significant differences in the quantile functions of the LIP

across different education levels. We reject the null hypothesis in most cases at the 1% and 5% significance

levels. Interestingly, as Table 5 shows, this difference is less apparent between the Master’s and Doctoral

male groups, implying that through the rescaling process, the overall shapes of the quantile functions of the

LIP are more or less similar between the Master’s and Doctoral male groups.

8.2 Inference on income paths for later work years

We repeat the exercises conducted in Section 8.1 using the same samples and group specifications classified

by gender and education levels. The LIP domain is now restricted to the 10–40 year cycle to remove early

job mobility effects on the test statistics and focus on the later years work cycle.

Tables 6 and 7 report inferential findings on gender effects and are summarized as follows. Table 6 gives

test results from the Wald, LM, and QLR statistics. Similar to Table 2, the gender effect on the quantile

functions of the LIP is significant for the groups with college education. In particular, for each of the three

models, the hypothesis of equal LIPs between genders is rejected for the groups with college education in

most tests, but not so for the group without college education (except for the median quantile τ = 0.5 by
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the Wald and LM tests). In addition, the gender gap becomes less evident in the Doctoral group relative to

the Master’s group as τ increases. These findings reflect those reported earlier in Section 8.1. Second, the

inference results are sharply reversed if the LIPs are rescaled by their respective integrated LIPs over the

mature work experience years, 10–40 years. As shown in Table 7, for all τ levels under consideration, there

is no strong evidence to conclude that the quantile functions of the rescaled LIPs differ between genders

and among the different education levels. Interestingly, this phenomenon is more evident for larger τ : when

τ = 0.25, for instance, the LM test rejects the null hypothesis of the equal quantile functions between

genders in the Doctoral group at the 5% level of significance, but we fail to reject the null hypothesis by all

of the Wald, LM, and QLR tests, when τ = 0.75.

Finally, Tables 8 and 9 report test outcomes of the education effect on the quantile functions of the

income paths over the mature career years. These outcomes parallel those of Tables 4 and 5. Table 8 shows

that the education effect cannot be ignored for quadratic, cubic, and quartic specifications if the data are

not rescaled. But upon rescaling the LIPs, the education effect diminishes. Moreover, as in Table 6, this

tendency is clearer for the large value of τ . Indeed, when τ = 0.75, the null hypothesis of equivalence is not

rejected by the Wald, LM, and QLR tests for each of the quadratic, cubic, and quartic model specifications.

To sum up, gender and education effects on the quantile functions of the income curves are evident,

irrespective of whether full lifetime experience or just mature career years are considered. But when the

income paths are rescaled for each individual, the gaps in the quantile functions induced by different genders

and education levels become less obvious. This feature is consistent with the findings of Cho, Phillips, and

Seo (2022) based on the mean functions of the LIP. Specifically, they provide empirical evidence that the

mean functions of the rescaled LIPs do not differ between genders and/or among education levels, although

the mean functions of the original LIPs do differ. So these empirical findings are compatible. Our findings

further reveal that this tendency is more noticeable at higher quantile values of τ . Thus, the gap in the

quantile functions of the rescaled LIPs induced by different genders and education levels becomes smaller

for workers with higher income levels in each group.

9 Concluding Remarks

This paper extends standard parametric quantile regression methodology to a functional data setting, pro-

viding estimation and inferential techniques that enable evidence based analysis of the quantiles of curve

observations. A full asymptotic theory is developed under regularity conditions that enable a wide range

of potential applications and allow for misspecified as well as correctly specified parametric model for-

mulations. The methods and limit theory also allow for the functional data to be influenced by nuisance

parameter estimation effects which often figure in dataset construction. Taken together, the methods provide

a new approach to quantile regression estimation and inference that has many applications. The labor income

empirical application given in the paper is one example in which curve data are of interest in economics,
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particularly in microeconomic analysis, where an assessment of such factors as gender and education level

in determining the shape of lifetime income profiles is relevant. The present methods should prove useful

in other fields of analysis where curve data appear or can be readily constructed, including multi-country

macroeconomic and international trade studies in economics that involve comparisons of various economic

indicators such as inflation, unemployment, growth, and merchandise trade data measured over the same

time period.
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Size of the Tests

Statistics Levels\n 50 100 200 300 400 500
10% 12.38 12.62 10.72 10.98 10.84 10.92

W̄n 5% 6.76 7.38 6.04 5.40 5.60 5.60
1% 2.06 2.02 1.68 1.18 1.50 1.32

10% 11.34 9.82 10.18 9.70 10.44 9.66
¯LMn 5% 5.16 5.04 5.18 4.98 5.28 4.66

1% 1.14 1.08 1.12 0.88 1.14 0.88
10% 10.14 10.16 9.70 10.38 9.84 10.14

¯QLRn 5% 5.22 5.32 4.66 4.94 5.38 4.90
1% 1.16 1.16 1.06 0.92 1.16 0.98

Power of the Tests

Statistics Levels\n 20 40 60 80 100 120
10% 78.70 97.30 99.76 99.96 100.0 100.0

W̄n 5% 69.96 94.50 99.28 99.94 99.96 100.0
1% 51.44 86.48 96.52 99.40 99.82 99.98

10% 74.10 97.00 99.84 100.0 100.0 100.0
¯LMn 5% 66.06 94.12 99.54 99.90 99.98 100.0

1% 35.12 80.54 96.14 99.38 99.92 99.98
10% 85.92 98.62 99.94 100.0 100.0 100.0

¯QLRn 5% 77.20 97.30 99.86 100.0 100.0 100.0
1% 55.68 90.00 98.50 99.86 99.94 100.0

Local Power of the Tests

Statistics Levels\n 50 100 200 300 400 500
10% 83.86 81.64 81.48 79.24 79.96 79.18

W̄n 5% 75.86 72.86 71.68 69.52 70.22 69.18
1% 57.92 53.44 50.10 47.80 47.86 46.92

10% 83.16 80.60 80.12 78.00 78.96 77.74
¯LMn 5% 72.34 69.22 69.24 68.66 69.30 67.56

1% 48.64 46.02 44.70 44.60 45.80 43.36
10% 89.62 87.24 87.24 85.28 86.36 85.56

¯QLRn 5% 82.78 79.74 79.44 77.00 77.98 77.10
1% 63.68 60.14 57.72 56.18 56.74 55.32

Table 1: EMPIRICAL REJECTION RATES OF THE TEST STATISTICS UNDER THE NULL, ALTERNATIVE,
AND LOCAL ALTERNATIVE HYPOTHESES (IN PERCENT). This table shows the simulation results for
the Wald, LM, and QLR test statistics under the null, alternative, and local alternative hypothesis. We let
Gi(γ) := Xi + Xiγ with γ ∈ [1/2, 1] and Xi := 1{Wi > α/

√
n}Zi + 1{Wi ≤ α/

√
n}Z1/2

i − 1/2,
where Zi ∼iid U [0, 1] and Wi ∼iid U [0, 1]. For τ1 = 1/3 and τ2 = 2/3, we let ρ(γ, θτj ) := θτj + θτjγ
denote the model for the quantile function, where for j = 1, 2, θτj ∈ Θ := [−1/2, 1/2]. In addition, the
null, alternative, and local alternative DGPs are generated by letting α be 0,

√
n, and 5, respectively, to test

Ho : θ
∗
τ1 = −1/6 and θ∗τ2 = 1/6 against Ha : θ∗τ1 ̸= −1/6 or θ∗τ2 ̸= 1/6.
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Inference results on the quantiles of the log income path across different genders

Education Level Wald LM QLR

τ = 0.25

Quadratic

w/o Degree 14.51∗∗ 42.60∗∗ 31.44
Bachelor 102.40∗∗ 66.45∗∗ 355.28∗∗

Master 9.26∗ 5.81 37.16
Ph.D 38.06∗∗ 26.72∗∗ 155.59∗∗

Cubic

w/o Degree 19.13∗∗ 63.78∗∗ 33.49
Bachelor 111.79∗∗ 80.56∗∗ 356.25∗∗

Master 21.90∗∗ 19.37∗∗ 59.05∗

Ph.D 59.07∗∗ 38.51∗∗ 194.44∗∗

Quartic

w/o Degree 25.59∗∗ 66.69∗∗ 38.68
Bachelor 121.49∗∗ 84.71∗∗ 368.70∗∗

Master 16.62∗∗ 7.51 63.87∗

Ph.D 56.72∗∗ 33.07∗∗ 222.87∗∗

τ = 0.5

Quadratic

w/o Degree 21.95∗∗ 45.63∗∗ 31.85
Bachelor 128.55∗∗ 139.76∗∗ 777.47∗∗

Master 34.66∗∗ 34.96∗∗ 182.31∗∗

Ph.D 28.92∗∗ 31.72∗∗ 176.13∗∗

Cubic

w/o Degree 21.62∗∗ 49.36∗∗ 32.18
Bachelor 163.66∗∗ 162.02∗∗ 820.52∗∗

Master 44.91∗∗ 60.26∗∗ 176.89∗∗

Ph.D 29.93∗∗ 40.99∗∗ 178.77∗∗

Quartic

w/o Degree 22.99∗∗ 43.89∗∗ 30.81
Bachelor 261.41∗∗ 186.51∗∗ 814.74∗∗

Master 90.92∗∗ 68.53∗∗ 182.80∗∗

Ph.D 38.47∗∗ 38.54∗∗ 174.09∗∗

τ = 0.75

Quadratic

w/o Degree 1.77 2.60 2.18
Bachelor 132.20∗∗ 138.11∗∗ 742.19∗∗

Master 77.35∗∗ 72.03∗∗ 332.41∗∗

Ph.D 15.88∗∗ 19.85∗∗ 126.70∗∗

Cubic

w/o Degree 1.75 3.83 1.98
Bachelor 180.50∗∗ 214.27∗∗ 768.28∗∗

Master 68.28∗∗ 76.36∗∗ 307.91∗∗

Ph.D 25.61∗∗ 23.20∗∗ 129.27∗∗

Quartic

w/o Degree 5.04 11.71∗ 9.66
Bachelor 309.30∗∗ 210.61∗∗ 712.39∗∗

Master 110.34∗∗ 70.81∗∗ 294.06∗∗

Ph.D 24.56∗∗ 18.46∗∗ 104.02∗∗

Table 2: INFERENCE RESULTS USING FUNCTION DATA OVER 0 TO 40 WORK EXPERIENCE YEARS

(NON-SCALED). This table shows the Wald, LM, and QLR test statistics and the inference results for the
null hypothesis of equal log income paths across different genders at quantiles τ = 0.25, 0.50, and 0.75.
The figures with affixes ‘*’ and ‘**’ indicate rejection of the null hypothesis at 5% and 1% significance
levels.
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Inference results on the quantiles of the rescaled log income path across different genders

Education Level Wald LM QLR

τ = 0.25

Quadratic

w/o Degree 11.11∗ 6.81 7.44
Bachelor 28.45∗∗ 43.32∗∗ 59.02∗∗

Master 22.35∗∗ 13.96∗∗ 22.53∗

Ph.D 9.83∗ 5.38 1.51

Cubic

w/o Degree 10.05∗ 14.59∗∗ 9.30
Bachelor 23.76∗∗ 52.53∗∗ 54.27∗∗

Master 15.75∗∗ 19.01∗∗ 17.62
Ph.D 21.34∗∗ 20.66∗∗ 8.94

Quartic

w/o Degree 13.67∗ 12.90∗ 9.82
Bachelor 28.23∗∗ 30.92∗∗ 21.72
Master 19.11∗∗ 7.77 4.68
Ph.D 17.45∗∗ 20.02∗∗ 20.09

τ = 0.5

Quadratic

w/o Degree 6.03 9.06∗ 10.34
Bachelor 136.95∗∗ 165.08∗∗ 732.60∗∗

Master 12.90∗∗ 5.40 11.17
Ph.D 5.64 2.29 3.08

Cubic

w/o Degree 8.05 17.55∗∗ 12.19
Bachelor 49.71∗∗ 88.66∗∗ 90.18∗∗

Master 16.96∗∗ 28.95∗∗ 33.35∗

Ph.D 13.86∗∗ 33.82∗∗ 23.54∗

Quartic

w/o Degree 13.68∗ 16.80∗∗ 10.13
Bachelor 264.71∗∗ 174.43∗∗ 725.93∗∗

Master 95.31∗∗ 57.52∗∗ 160.43∗∗

Ph.D 43.16∗∗ 36.62∗∗ 149.01∗∗

τ = 0.75

Quadratic

w/o Degree 8.96∗ 8.51∗ 10.38
Bachelor 36.75∗∗ 20.24∗∗ 0.33
Master 9.92∗ 2.04 3.58
Ph.D 8.22∗ 0.59 17.42

Cubic

w/o Degree 12.02∗ 14.51∗∗ 9.34
Bachelor 33.25∗∗ 59.62∗∗ 59.85∗∗

Master 10.31∗ 10.83∗ 20.62∗

Ph.D 8.10 8.70 8.72

Quartic

w/o Degree 13.19∗ 15.42∗∗ 7.09
Bachelor 29.98∗∗ 66.13∗∗ 109.93∗∗

Master 7.20 19.65∗∗ 40.30∗∗

Ph.D 4.69 17.90∗∗ 21.62

Table 3: INFERENCE RESULTS USING FUNCTION DATA OVER 0 TO 40 WORK EXPERIENCE YEARS

(RESCALED). This table shows the Wald, LM, and QLR test statistics and the inference results for the
null hypothesis of the equal rescaled log income paths across different genders at quantiles τ = 0.25, 0.50,
and 0.75. The figures with affixes ‘*’ and ‘**’ indicate rejection of the null hypothesis at the 5% and 1%
significance levels.
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Inference results on the quantiles of the log income path across different education levels

Male Female
Wald LM QLR Wald LM QLR

τ = 0.25

Quadratic
w/o Degree vs. Bachelor 1035.70∗∗ 1428.50∗∗ 9486.50∗∗ 1613.80∗∗ 1386.30∗∗ 7626.70∗∗

Bachelor vs. Master 132.97∗∗ 75.94∗∗ 867.58∗∗ 293.63∗∗ 118.09∗∗ 936.04∗∗

Master vs. Ph.D 29.32∗∗ 30.10∗∗ 108.38∗∗ 15.63∗∗ 13.30∗∗ 17.05

Cubic
w/o Degree vs. Bachelor 1075.40∗∗ 1417.70∗∗ 9596.00∗∗ 2438.90∗∗ 1489.40∗∗ 7691.70∗∗

Bachelor vs. Master 223.22∗∗ 91.48∗∗ 955.75∗∗ 462.57∗∗ 153.90∗∗ 938.21∗∗

Master vs. Ph.D 39.14∗∗ 22.76∗∗ 100.45∗∗ 21.97∗∗ 25.01∗∗ 22.79

Quartic
w/o Degree vs. Bachelor 1192.40∗∗ 1540.70∗∗ 9761.80∗∗ 3139.10∗∗ 1604.50∗∗ 7877.60∗∗

Bachelor vs. Master 178.71∗∗ 86.05∗∗ 974.70∗∗ 498.43∗∗ 167.94∗∗ 943.39∗∗

Master vs. Ph.D 32.73∗∗ 19.18∗∗ 114.34∗∗ 22.83∗∗ 17.40∗∗ 19.56

τ = 0.5

Quadratic
w/o Degree vs. Bachelor 1297.40∗∗ 972.09∗∗ 10469.00∗∗ 1198.60∗∗ 921.94∗∗ 7913.50∗∗

Bachelor vs. Master 156.98∗∗ 125.81∗∗ 1243.30∗∗ 227.00∗∗ 190.56∗∗ 1293.40∗∗

Master vs. Ph.D 18.19∗∗ 28.51∗∗ 105.82∗∗ 24.44∗∗ 26.05∗∗ 69.72∗

Cubic
w/o Degree vs. Bachelor 1754.40∗∗ 1002.70∗∗ 10631.00∗∗ 1736.70∗∗ 995.46∗∗ 7899.30∗∗

Bachelor vs. Master 203.43∗∗ 189.45∗∗ 1249.80∗∗ 305.58∗∗ 240.92∗∗ 1301.60∗∗

Master vs. Ph.D 18.32∗∗ 33.09∗∗ 106.09∗∗ 23.04∗∗ 30.71∗∗ 73.70∗

Quartic
w/o Degree vs. Bachelor 2224.10∗∗ 999.07∗∗ 10635.00∗∗ 2377.70∗∗ 1040.40∗∗ 7884.90∗∗

Bachelor vs. Master 312.23∗∗ 178.14∗∗ 1304.00∗∗ 478.45∗∗ 250.22∗∗ 1349.30∗∗

Master vs. Ph.D 20.86∗∗ 25.18∗∗ 93.95∗ 42.80∗∗ 40.11∗∗ 72.39∗

τ = 0.75

Quadratic
w/o Degree vs. Bachelor 994.63∗∗ 552.80∗∗ 7437.60∗∗ 526.95∗∗ 507.70∗∗ 5404.20∗∗

Bachelor vs. Master 144.49∗∗ 185.61∗∗ 1235.70∗∗ 118.55∗∗ 178.13∗∗ 866.55∗∗

Master vs. Ph.D 23.51∗∗ 23.78∗∗ 84.43∗ 46.36∗∗ 37.38∗∗ 171.52∗∗

Cubic
w/o Degree vs. Bachelor 1389.00∗∗ 588.99∗∗ 7644.60∗∗ 657.82∗∗ 491.60∗∗ 5465.90∗∗

Bachelor vs. Master 149.57∗∗ 172.99∗∗ 1215.30∗∗ 96.33∗∗ 167.14∗∗ 855.38∗∗

Master vs. Ph.D 39.00∗∗ 28.27∗∗ 93.41∗ 47.84∗∗ 34.34∗∗ 182.34∗∗

Quartic
w/o Degree vs. Bachelor 1702.30∗∗ 499.12∗∗ 7477.00∗∗ 757.48∗∗ 499.21∗∗ 5326.00∗∗

Bachelor vs. Master 176.91∗∗ 200.45∗∗ 1219.10∗∗ 157.37∗∗ 199.91∗∗ 817.24∗∗

Master vs. Ph.D 59.29∗∗ 33.49∗∗ 97.74∗ 64.63∗∗ 29.94∗∗ 192.86∗∗

Table 4: INFERENCE RESULTS USING DATA OVER 0 TO 40 WORK EXPERIENCE YEARS (NON-SCALED).
This table shows the Wald, LM, and QLR test statistics and the inference results for the null hypothesis of
the equal log income paths across different education levels at quantiles τ = 0.25, 0.50, and 0.75. The
affixes ‘*’ and ‘**’ signify rejection of the null hypothesis at the 5% and 1% significance levels.
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Inference results on the rescaled quantiles of the rescaled log income path across different education levels

Male Female
Wald LM QLR Wald LM QLR

τ = 0.25

Quadratic
w/o Degree vs. Bachelor 455.37∗∗ 300.87∗∗ 422.37∗∗ 189.00∗∗ 127.96∗∗ 173.43∗∗

Bachelor vs. Master 70.32∗∗ 51.36∗∗ 92.75∗∗ 18.84∗∗ 24.70∗∗ 43.68∗∗

Master vs. Ph.D 5.40 6.11 9.34 16.74∗∗ 12.13∗∗ 22.27∗

Cubic
w/o Degree vs. Bachelor 435.83∗∗ 344.16∗∗ 489.41∗∗ 212.49∗∗ 213.42∗∗ 229.57∗∗

Bachelor vs. Master 50.71∗∗ 73.04∗∗ 119.30∗∗ 14.21∗∗ 33.20∗∗ 60.86∗∗

Master vs. Ph.D 17.64∗∗ 9.72∗ 9.03 16.39∗∗ 15.65∗∗ 33.12∗

Quartic
w/o Degree vs. Bachelor 450.76∗∗ 170.09∗∗ 344.50∗∗ 184.43∗∗ 126.68∗∗ 213.68∗∗

Bachelor vs. Master 69.94∗∗ 49.41∗∗ 92.70∗∗ 14.14∗ 17.06∗∗ 37.75∗∗

Master vs. Ph.D 13.01∗ 13.50∗ 16.58 17.42∗∗ 14.10∗ 44.45∗∗

τ = 0.5

Quadratic
w/o Degree vs. Bachelor 422.39∗∗ 322.04∗∗ 370.49∗∗ 168.50∗∗ 121.72∗∗ 107.53∗∗

Bachelor vs. Master 41.79∗∗ 18.01∗∗ 24.10∗ 38.26∗∗ 27.49∗∗ 43.88∗∗

Master vs. Ph.D 4.76 4.78 11.54 13.08∗∗ 16.28∗∗ 39.55∗∗

Cubic
w/o Degree vs. Bachelor 497.42∗∗ 571.74∗∗ 543.37∗∗ 227.70∗∗ 307.39∗∗ 179.60∗∗

Bachelor vs. Master 36.89∗∗ 57.85∗∗ 100.68∗∗ 27.59∗∗ 46.96∗∗ 68.61∗

Master vs. Ph.D 6.52 13.30∗∗ 13.32 16.96∗∗ 20.77∗∗ 43.34∗∗

Quartic
w/o Degree vs. Bachelor 446.61∗∗ 394.76∗∗ 530.48∗∗ 191.67∗∗ 240.80∗∗ 210.42∗∗

Bachelor vs. Master 41.43∗∗ 55.26∗∗ 124.62∗∗ 27.51∗∗ 34.05∗∗ 72.13∗∗

Master vs. Ph.D 7.31 8.83 15.11 18.71∗∗ 19.16∗∗ 46.75∗∗

τ = 0.75

Quadratic
w/o Degree vs. Bachelor 318.23∗∗ 375.63∗∗ 204.05∗∗ 115.69∗∗ 107.56∗∗ 55.63∗∗

Bachelor vs. Master 26.26∗∗ 19.86∗∗ 17.42∗ 27.57∗∗ 16.38∗∗ 4.38
Master vs. Ph.D 5.99 4.47 9.00 8.25∗ 18.14∗∗ 37.79∗∗

Cubic
w/o Degree vs. Bachelor 395.43∗∗ 966.35∗∗ 453.60∗∗ 205.53∗∗ 447.47∗∗ 163.01∗∗

Bachelor vs. Master 23.93∗∗ 29.96∗∗ 43.27∗∗ 23.39∗∗ 29.03∗∗ 25.37∗∗

Master vs. Ph.D 9.42 13.86∗∗ 19.42 10.38∗ 19.11∗∗ 33.00∗∗

Quartic
w/o Degree vs. Bachelor 300.81∗∗ 995.12∗∗ 587.19∗∗ 145.27∗∗ 470.57∗∗ 210.00∗∗

Bachelor vs. Master 20.20∗∗ 36.11∗∗ 77.88∗∗ 26.41∗∗ 32.67∗∗ 43.41∗∗

Master vs. Ph.D 10.12 15.54∗∗ 17.15 12.11∗ 18.11∗∗ 32.89∗

Table 5: INFERENCE RESULTS USING DATA OVER 0 TO 40 WORK EXPERIENCE YEARS (RESCALED).
This table shows the Wald, LM, and QLR test statistics and the inference results for the null hypothesis of
the equal rescaled log income paths across different education levels at quantiles τ = 0.25, 0.50, and 0.75.
The affixes ‘*’ and ‘**’ signify rejection of the null hypothesis at the 5% and 1% significance levels.
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Inference results on the quantiles of the log income path across different genders

Education Level Wald LM QLR

τ = 0.25

Quadratic

w/o Degree 0.19 0.80 1.84
Bachelor 106.73∗∗ 81.71∗∗ 301.97∗∗

Master 8.68∗ 12.29∗∗ 49.08∗

Ph.D 32.07∗∗ 27.10∗∗ 153.83∗∗

Cubic

w/o Degree 4.18 9.49∗ 4.98
Bachelor 140.13∗∗ 76.32∗∗ 309.77∗∗

Master 20.97∗∗ 8.44 47.55∗

Ph.D 48.66∗∗ 30.58∗∗ 162.53∗∗

Quartic

w/o Degree 11.05 10.21 4.33
Bachelor 138.52∗∗ 73.35∗∗ 306.74∗∗

Master 21.43∗∗ 8.15 48.28
Ph.D 59.54∗∗ 31.14∗∗ 162.70∗∗

τ = 0.5

Quadratic

w/o Degree 10.30∗ 16.03∗∗ 10.25
Bachelor 56.05∗∗ 46.51∗∗ 58.34∗∗

Master 39.70∗∗ 46.55∗∗ 159.29∗∗

Ph.D 27.45∗∗ 36.85∗∗ 145.37∗∗

Cubic

w/o Degree 13.05∗ 14.83∗∗ 10.08
Bachelor 255.53∗∗ 165.62∗∗ 722.14∗∗

Master 88.96∗∗ 58.39∗∗ 161.99∗∗

Ph.D 43.51∗∗ 38.69∗∗ 152.19∗∗

Quartic

w/o Degree 9.09 10.43 8.02
Bachelor 52.69∗∗ 70.86∗∗ 91.16∗∗

Master 17.43∗∗ 27.64∗∗ 40.97∗

Ph.D 15.16∗∗ 32.77∗∗ 22.75

τ = 0.75

Quadratic

w/o Degree 1.36 1.66 1.44
Bachelor 140.07∗∗ 148.19∗∗ 692.16∗∗

Master 65.99∗∗ 61.67∗∗ 290.77∗∗

Ph.D 18.68∗∗ 20.45∗∗ 98.20∗∗

Cubic

w/o Degree 2.34 2.42 1.50
Bachelor 287.81∗∗ 156.67∗∗ 693.07∗∗

Master 91.11∗∗ 64.60∗∗ 293.62∗∗

Ph.D 24.79∗∗ 23.02∗∗ 98.64∗∗

Quartic

w/o Degree 2.76 2.72 1.84
Bachelor 307.25∗∗ 158.45∗∗ 691.63∗∗

Master 98.89∗∗ 69.41∗∗ 294.82∗∗

Ph.D 24.74∗∗ 23.90∗∗ 98.71∗

Table 6: INFERENCE RESULTS USING FUNCTION DATA OVER 10 TO 40 WORK EXPERIENCE YEARS (NON-
SCALED). This table shows the Wald, LM, and QLR test statistics and the inference results for the null hypothesis of
the equal log income paths across different genders at quantiles τ = 0.25, 0.50, and 0.75. The affixes ‘*’ and ‘**’
signify rejection of the null hypothesis at the 5% and 1% significance levels.
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Inference results on the quantiles of the rescaled log income path across different genders

Education Level Wald LM QLR

τ = 0.25

Quadratic

w/o Degree 2.34 0.40 0.46
Bachelor 0.52 1.29 0.56
Master 3.09 0.96 4.63
Ph.D 5.95 11.47∗∗ 12.61

Cubic

w/o Degree 3.68 4.43 1.83
Bachelor 2.57 3.09 1.07
Master 2.74 1.95 6.20
Ph.D 8.13 13.26∗ 13.17

Quartic

w/o Degree 5.08 8.01 4.02
Bachelor 2.92 2.17 0.88
Master 5.31 2.49 5.67
Ph.D 12.44∗ 11.86∗ 13.35

τ = 0.5

Quadratic

w/o Degree 1.12 2.17 2.07
Bachelor 1.78 2.35 5.35
Master 2.36 2.64 1.38
Ph.D 3.76 8.13∗ 6.94

Cubic

w/o Degree 1.35 6.53 5.29
Bachelor 4.44 6.29 5.83
Master 3.78 10.93∗ 3.38
Ph.D 4.17 16.84∗∗ 8.14

Quartic

w/o Degree 13.74∗ 10.39 5.24
Bachelor 13.27∗ 8.87 8.10
Master 3.35 12.00∗ 2.37
Ph.D 8.58 15.74∗∗ 8.69

τ = 0.75

Quadratic

w/o Degree 1.90 1.54 1.14
Bachelor 0.30 0.27 1.22
Master 1.51 1.17 0.98
Ph.D 1.37 2.12 0.82

Cubic

w/o Degree 1.68 2.02 1.37
Bachelor 2.65 2.10 1.09
Master 1.97 1.77 1.32
Ph.D 1.43 1.71 0.81

Quartic

w/o Degree 6.19 4.74 2.47
Bachelor 3.92 3.91 1.70
Master 3.33 8.25 1.78
Ph.D 1.44 2.35 0.78

Table 7: INFERENCE RESULTS USING FUNCTION DATA OVER 10 TO 40 WORK EXPERIENCE YEARS
(RESCALED). This table shows the Wald, LM, and QLR test statistics and the inference results for the null hy-
pothesis of the equal rescaled log income paths across different genders at quantiles τ = 0.25, 0.50, and 0.75. The
affixes ‘*’ and ‘**’ signify rejection of the null hypothesis at the 5% and 1% significance levels.
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Inference results on the quantiles of the log income path across different education levels

Male Female
Wald LM QLR Wald LM QLR

τ = 0.25

Quadratic
w/o Degree vs. Bachelor 1027.90∗∗ 1433.40∗∗ 8223.50∗∗ 1888.40∗∗ 1465.30∗∗ 6498.80∗∗

Bachelor vs. Master 138.07∗∗ 79.61∗∗ 764.64∗∗ 348.92∗∗ 141.31∗∗ 777.12∗∗

Master vs. Ph.D 29.06∗∗ 17.46∗∗ 90.89∗ 18.17∗∗ 19.37∗∗ 20.25

Cubic
w/o Degree vs. Bachelor 1534.20∗∗ 1469.20∗∗ 8301.10∗∗ 3359.40∗∗ 1530.00∗∗ 6566.00∗∗

Bachelor vs. Master 284.93∗∗ 87.00∗∗ 766.95∗∗ 604.28∗∗ 167.03∗∗ 784.66∗∗

Master vs. Ph.D 33.61∗∗ 18.39∗∗ 94.12∗ 22.59∗∗ 17.08∗∗ 19.85

Quartic
w/o Degree vs. Bachelor 1501.30∗∗ 1523.40∗∗ 8297.70∗∗ 4090.80∗∗ 1634.80∗∗ 6581.80∗∗

Bachelor vs. Master 290.83∗∗ 88.60∗∗ 769.47∗∗ 642.94∗∗ 177.83∗∗ 783.86∗∗

Master vs. Ph.D 36.78∗∗ 19.41∗∗ 96.78∗ 30.86∗∗ 18.17∗∗ 19.98

τ = 0.5

Quadratic
w/o Degree vs. Bachelor 1408.30∗∗ 984.33∗∗ 9024.80∗∗ 1329.10∗∗ 996.06∗∗ 6613.20∗∗

Bachelor vs. Master 166.87∗∗ 157.57∗∗ 1074.80∗∗ 253.49∗∗ 214.95∗∗ 1154.90∗∗

Master vs. Ph.D 16.29∗∗ 23.97∗∗ 90.13∗ 23.06∗∗ 27.53∗∗ 67.28∗

Cubic
w/o Degree vs. Bachelor 2631.70∗∗ 992.88∗∗ 8995.20∗∗ 2632.20∗∗ 1065.90∗∗ 6612.50∗∗

Bachelor vs. Master 384.62∗∗ 178.07∗∗ 1093.40∗∗ 519.79∗∗ 241.20∗∗ 1163.00∗∗

Master vs. Ph.D 21.81∗∗ 22.20∗∗ 89.81∗ 37.06∗∗ 32.67∗∗ 70.32∗

Quartic
w/o Degree vs. Bachelor 2727.20∗∗ 1007.50∗∗ 8993.80∗∗ 2744.20∗∗ 1093.70∗∗ 6606.60∗∗

Bachelor vs. Master 398.37∗∗ 186.70∗∗ 1098.50∗∗ 582.02∗∗ 258.73∗∗ 1162.80∗∗

Master vs. Ph.D 21.93∗∗ 21.99∗∗ 88.10∗ 41.31∗∗ 37.38∗∗ 68.68∗

τ = 0.75

Quadratic
w/o Degree vs. Bachelor 1079.60∗∗ 511.69∗∗ 6297.30∗∗ 527.86∗∗ 482.93∗∗ 4459.80∗∗

Bachelor vs. Master 130.01∗∗ 181.08∗∗ 1075.60∗∗ 103.03∗∗ 172.33∗∗ 713.65∗∗

Master vs. Ph.D 27.57∗∗ 25.36∗∗ 76.43∗ 41.07∗∗ 31.76∗∗ 171.82∗∗

Cubic
w/o Degree vs. Bachelor 2069.40∗∗ 499.91∗∗ 6254.30∗∗ 1002.50∗∗ 500.93∗∗ 4419.20∗∗

Bachelor vs. Master 183.45∗∗ 189.39∗∗ 1073.00∗∗ 173.75∗∗ 192.26∗∗ 711.00∗∗

Master vs. Ph.D 61.46∗∗ 30.18∗∗ 80.98∗ 71.59∗∗ 29.80∗∗ 176.09∗∗

Quartic
w/o Degree vs. Bachelor 2090.00∗∗ 498.15∗∗ 6255.30∗∗ 1025.90∗∗ 503.29∗∗ 4407.50∗∗

Bachelor vs. Master 203.95∗∗ 196.07∗∗ 1077.10∗∗ 184.88∗∗ 219.93∗∗ 709.44∗∗

Master vs. Ph.D 73.05∗∗ 35.54∗∗ 81.53∗ 73.41∗∗ 29.81∗∗ 178.75∗∗

Table 8: INFERENCE RESULTS USING FUNCTION DATA OVER 10 TO 40 WORK EXPERIENCE YEARS

(NON-SCALED). This table shows the Wald, LM, and QLR test statistics and the inference results for the
null hypothesis of the equal log income paths across different education levels at quantiles τ = 0.25, 0.50,
and 0.75. The affixes ‘*’ and ‘**’ signify rejection of the null hypothesis at the 5% and 1% significance
levels.
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Inference results on the rescaled quantiles of the rescaled log income path across different education levels

Male Female
Wald LM QLR Wald LM QLR

τ = 0.25

Quadratic
w/o Degree vs. Bachelor 9.79∗ 2.07 11.10 3.70 2.89 7.73

Bachelor vs. Master 11.87∗∗ 4.82 19.27∗ 1.88 1.98 1.93
Master vs. Ph.D 8.16∗ 3.56 5.39 3.56 4.01 8.76

Cubic
w/o Degree vs. Bachelor 9.87∗ 4.53 15.44 4.62 5.17 11.02

Bachelor vs. Master 16.51∗∗ 5.84 22.78∗ 2.17 1.41 1.74
Master vs. Ph.D 8.11 3.84 7.15 4.05 6.38 12.96

Quartic
w/o Degree vs. Bachelor 12.96∗ 7.18 14.95 12.82∗ 5.68 12.31

Bachelor vs. Master 18.97∗∗ 6.52 21.99∗ 2.62 1.25 1.02
Master vs. Ph.D 9.25 4.14 7.49 6.55 5.22 10.35

τ = 0.5

Quadratic
w/o Degree vs. Bachelor 2.25 1.11 4.08 0.66 1.42 3.27

Bachelor vs. Master 2.81 4.74 12.61 9.68∗ 7.17 28.24∗∗

Master vs. Ph.D 1.92 3.01 7.14 3.71 7.70 22.18∗

Cubic
w/o Degree vs. Bachelor 2.23 2.15 4.98 1.59 1.83 5.18

Bachelor vs. Master 3.45 5.81 15.02 11.13∗ 7.10 27.11∗

Master vs. Ph.D 1.99 3.19 8.67 5.43 8.13 22.49∗

Quartic
w/o Degree vs. Bachelor 3.19 6.06 5.42 3.49 1.82 4.88

Bachelor vs. Master 4.70 5.20 14.60 19.77∗∗ 7.39 26.37∗

Master vs. Ph.D 2.97 5.13 9.20 14.09∗ 8.12 22.08

τ = 0.75

Quadratic
w/o Degree vs. Bachelor 0.99 1.95 1.99 2.98 2.86 0.28

Bachelor vs. Master 6.01 4.79 6.11 3.93 2.99 8.40
Master vs. Ph.D 4.10 3.56 8.53 2.31 2.82 8.19

Cubic
w/o Degree vs. Bachelor 1.18 3.06 1.89 4.25 3.56 0.12

Bachelor vs. Master 6.60 5.37 7.48 4.42 4.15 10.28
Master vs. Ph.D 4.25 3.80 8.32 2.97 3.53 8.69

Quartic
w/o Degree vs. Bachelor 2.62 4.58 2.61 4.59 4.34 0.33

Bachelor vs. Master 10.90 6.83 7.90 4.82 5.30 10.76
Master vs. Ph.D 10.69 5.84 9.15 4.33 3.33 9.27

Table 9: INFERENCE RESULTS USING FUNCTION DATA OVER 10 TO 40 WORK EXPERIENCE YEARS

(RESCALED). This table shows the Wald, LM, and QLR test statistics and the inference results for the
null hypothesis of the equal rescaled log income paths across different education levels at quantiles τ =
0.25, 0.50, and 0.75. The affixes ‘*’ and ‘**’ signify rejection of the null hypothesis at the 5% and 1%
significance levels.
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This Online Supplement is an Appendix that provides proofs of all the results in the paper,

including the lemmas, as well as some additional empirical findings. Proofs are given in Section

A.1 and the supplementary empirical application is in Section A.2

A Appendix

A.1 Proofs

Proof of Lemma 1: Note that dτ (γ, u) := E[ξτ (G(γ) − u)] − E[ξτ (G(γ) − xτ (γ))] = uFγ(u) −
uFγ(xτ (γ)) +

∫ xτ (γ)
−∞ gdFγ(g) −

∫ u
−∞ gdFγ(g). Applying integration by parts, xτ (γ)Fγ(xτ (γ)) =

∫ xτ (γ)
−∞

Fγ(g)dg +
∫ xτ (γ)
−∞ gdFγ(g), and uFγ(u) =

∫ u
−∞ Fγ(g)dg +

∫ u
−∞ gdFγ(g), giving

∫ xτ (γ)
−∞ g dFγ(g) −∫ u

−∞ gdFγ(g) = xτ (γ)Fγ(xτ (γ))−uFγ(u)+
∫ xτ (γ)
−∞ Fγ(g)dg−

∫ u
−∞ Fγ(g)dg. Hence, dτ (γ, u) = (xτ (γ)−

u)Fγ(xτ (γ))+
∫ xτ (γ)
−∞ Fγ(g)dg−

∫ u
−∞ Fγ(g)dg. Further, if xτ (γ) > u, then dτ (γ, u) =

∫ xτ (γ)
u {Fγ(xτ (γ))−

Fγ(g)}dg; and if xτ (γ) < u, then dτ (γ, u) =
∫ u
xτ (γ)

{Fγ(g)−Fγ(xτ (γ))}dg, so that dτ (γ, u) := E[ξτ (G(γ)

−u)]− E[ξτ (G(γ)− xτ (γ))] =
∫ max[u,xτ (γ)]
min[u,xτ (γ)]

|Fγ(g)− Fγ(xτ (γ))|dg. This completes the proof. ■

Proof of Theorem 1: First note that (3) implies that
√
n(θ̂τn−θ∗τ ) = −A∗−1

τ n−1/2
∑n

i=1 Jτi+oP(1). Given

that θ∗τ is identified as given in Assumption 2, the first-order condition holds, so that E[Jτi] = 0. Assumption

4 also implies that B∗
τ := E[JτiJ ′

τi] is positive definite. Furthermore, Assumption 3 implies that for each

j = 1, 2, . . . , cτ , E[J2
τij ] < ∞, where Jτij is the j-th row element of Jτi. Therefore, n−1/2

∑n
i=1 Jτi

A∼
N (0, B∗

τ ) by the multivariate CLT, so that
√
n(θ̂τn− θ∗τ )

A∼ N (0, A∗−1
τ B∗

τA
∗−1
τ ). This completes the proof.

■

Proof of Lemma 2: For simplicity let ρτ (γ′) := ρτ (γ
′, θ0τ ) and show stochastic equicontinuity of n−1/2

*Phillips acknowledges research support from the NSF under Grant No. SES 18-50860 at Yale University and a Kelly Fellowship
at the University of Auckland.
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∑n
i=1(1{Gi(·) ≤ ρτ (·, θ0τ )} − τ) using Ossiander’s L2 entropy condition: for some ν > 0 and C > 0,

E

(
sup

∥γ−γ′∥<δ
|1{Gi(γ) ≤ ρτ (γ, θ

0
τ )} − τ − (1{Gi(γ

′ ≤ ρτ (γ
′, θ0τ ))} − τ)|2

)1/2

≤ Cδν .

To verify this, first note that if we let Ui(γ) := Fγ(Gi(γ)), where Fγ(·) is the CDF of Gi(γ), the left side is

identical to

E

(
sup

∥γ−γ′∥<δ
|1{Ui(γ)− τ ≤ 0} − 1{Ui(γ

′)− τ ≤ 0})|2
)1/2

by noting that Fγ(ρτ (γ, θ
0
τ )) = τ and Fγ′(ρτ (γ

′, θ0τ )) = τ . Next, apply the proof in Andrews (1994,

p. 2779), letting his Ut and h∗(Zt, ·) be 1 and Ui(·) − τ , respectively and note that Assumption 1 implies

that Ui(·) is Lipschitz continuous almost surely: for some C > 0, |Ui(γ) − Ui(γ
′)| ≤ C∥γ − γ′∥. Here,

we further note that Ui(γ) is uniformly distributed over [0, 1], so that its density function is bounded above

uniformly on Γ. Therefore, example 3 in Andrews (1994, p. 2779) proves equicontinuity by Ossiander’s L2

entropy condition.

Next derive the covariance structure of the Gaussian stochastic process Gτ (·), noting that for each γ and

γ′,

E[(1{Gi(γ) ≤ ρτ (γ, θ
0
τ )} − τ)(1{Gi(γ

′) ≤ ρτ (γ
′, θ0τ )} − τ)]

= E[(1{Ui(γ) ≤ τ} − τ)(1{Ui(γ
′) ≤ τ} − τ)]

= E[1{Ui(γ) ≤ τ}1{Ui(γ
′) ≤ τ}]− τE[1{Ui(γ) ≤ τ}]− τE[1{Ui(γ

′) ≤ τ}] + τ2

= E[1{Ui(γ) ≤ τ}1{Ui(γ
′) ≤ τ}]− τ2 = κ(γ, γ′),

where the final equality follows from the fact that E[1{Ui(γ) ≤ τ}] = τ uniformly on γ. This completes

the proof. ■

Proof of Theorem 2: Given Lemma 2, we note by continuous mapping that

∫
γ
∇θτρτ (γ, θ

0
τ )

1√
n

n∑
i=1

(
1{Gi(γ) ≤ ρτ (γ, θ

0
τ )} − τ

)
dQ(γ) ⇒

∫
γ
∇θτρτ (γ, θ

0
τ )Gτ (γ)dQ(γ)

which follows a normal distribution since Gτ (·) is a Gaussian stochastic process. Further note that applying

dominated convergence using Assumption 3,

E
[∫

γ
∇θτρτ (γ, θ

0
τ )Gτ (γ)dQ(γ)

]
=

∫
γ
∇θτρτ (γ, θ

0
τ )E[Gτ (γ)]dQ(γ) = 0 and

2



E
[∫

γ

∫
γ′
∇θτρτ (γ, θ

0
τ )Gτ (γ)Gτ (γ

′)∇θτρτ (γ
′, θ0τ )dQ(γ)dQ(γ′)

]
=

∫
γ

∫
γ′
∇θτρτ (γ, θ

0
τ )E[Gτ (γ)Gτ (γ

′)]∇′
θτρτ (γ, θ

0
τ )dQ(γ)dQ(γ′)

=

∫
γ

∫
γ′
∇θτρτ (γ, θ

0
τ )κτ (γ, γ

′)∇′
θτρτ (γ, θ

0
τ )dQ(γ)dQ(γ′) =: B0

τ ,

by the definition of κτ (·, ·). Therefore,
∫
γ ∇θτρτ (γ, θ

0
τ )Gτ (γ)dQ(γ) ∼ N (0, B0

τ ) where B0
τ is positive

definite by Assumption 5. This fact further implies that

√
n(θ̂τn − θ0τ ) ⇒ −A0−1

τ

∫
γ
∇θτρτ (γ, θ

0
τ )Gτ (γ)dQ(γ) ∼ N (0, C0

τ ),

as required. ■

Proof of Theorem 3: If we apply (4) to the misspecified model, it now follows that
√
n(θ̃τn − θ∗τ ) =

−A∗−1
τ n−1/2

∑n
i=1 Ĵτi + oP(1). We focus on n−1/2

∑n
i=1 Ĵτi to derive the limit distribution. Apply (A.1),

as given in the proof of Lemma 3, to the misspecified model giving, for each γ ∈ Γ,

1√
n

n∑
i=1

Ĵτi =
1√
n

n∑
i=1

(
1{Ĝi(γ) ≤ ρτ (γ, θ

∗
τ )} − τ

)
=

1√
n

n∑
i=1

(
1{G̃i(γ, π

∗) +∇′
πG̃i(γ, π̄γn)(π̂n − π∗) ≤ ρτ (γ, θ

∗
τ )} − τ

)
=

1√
n

n∑
i=1

[(
1{G̃i(γ, π

∗) ≤ ρτ (γ, θ
∗
τ )} − τ

)
− fγ(xτ (γ))E[∇′

πG̃i(γ, π
∗)]P ∗−1Si

]
+ oP(1).

Here, we applied the ULLN to obtain n−1
∑n

i=1∇πG̃i(·, π̄γn)
P→ E[∇πG̃i(·, π∗)] by using Assumption 8.

It now follows that

1√
n

n∑
i=1

Ĵτi =
1√
n

n∑
i=1

∫
γ
∇θτρτ (γ, θ

∗
τ )
(
1{G̃i(γ, π

∗) ≤ ρτ (γ, θ
∗
τ )} − τ

)
dQ(γ)

− 1√
n

n∑
i=1

∫
γ
∇θτρτ (γ, θ

∗
τ )fγ(xτ (γ))E[∇′

πG̃i(γ, π
∗)]dQ(γ)P ∗−1Si + oP(1).

Here, Assumptions 6 and 8 imply that
∫
γ ∇θτρτ (γ, θ

∗
τ )fγ(xτ (γ))E[∇′

πG̃i(γ, π
∗)]dQ(γ) is well defined.

We further note that
∫
γ ∇θτρτ (γ, θ

∗
τ )(1{G̃i(γ, π

∗) ≤ ρτ (γ, θ
∗
τ )} − τ) and

∫
γ ∇θτρτ (γ, θ

∗
τ )fγ(xτ (γ))E[

∇′
πG̃i(γ, π

∗)]dQ(γ) are defined as Jτi and K∗
τ , respectively, so that we can rewrite this equation as

1√
n

n∑
i=1

Ĵτi =
1√
n

n∑
i=1

(Jτi −K∗
τP

∗−1Si) + oP(1).
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Given this result, Assumptions 2 and 7 imply that E[Jτi] = 0 and E[Si] = 0. Furthermore, Assumption

9 implies that B̃∗
τ := E[(Jτi − K∗

τP
∗−1Si)(Jτi − K∗

τP
∗−1Si)

′] is positive definite, and for each j =

1, 2, . . . , cτ , E[J2
τij ] < ∞ and E[S2

ij ] < ∞ by Assumptions 7 and 8. It now follows by the multivariate CLT

that
√
n(θ̃τn − θ∗τ )

A∼ N (0, C̃∗
τ ), as required. ■

Proof of Lemma 3: We first derive the covariance kernel of G̃τ (·). Note that for any c, if a > 0, 1{x ≤
c− a} = 1{x ≤ c} − 1{x ∈ (c− a, c]}. On the other hand, if a < 0, 1{x ≤ c− a} = 1{x ≤ c}+ 1{x ∈
(c, c− a]}. Therefore, 1{x ≤ c− a} = 1{x ≤ c} − 1{c− a < x ≤ c}+ 1{c < x ≤ c− a}.

We use this equality to show the given claim. For notational simplicity, let xτ (γ) and µ̂ni(γ) denote

ρτ (γ, θ
0
τ ) and ∇′

πGi(γ, π̄γn)(π̂n−π∗), respectively. If we further let x, c, and a be Gi(γ), xτ (γ), and µ̂ni(γ),

respectively, it now follows that 1{G̃i(γ, π
∗) + ∇′

πGi(γ, π̄γn)(π̂n − π∗) ≤ ρτ (γ, θ
0
τ )} = 1{G̃i(γ, π

∗) ≤
xτ (γ)}+1{xτ (γ) < G̃i(γ, π

∗) ≤ xτ (γ)− µ̂ni(γ)}−1{xτ (γ)− µ̂ni(γ) < G̃i(γ, π
∗) ≤ xτ (γ)}. Note that

Assumption 8 implies that ∇πG̃i(·, ·) = OP(1) and (π̂n − π∗) = oP(1), so that µ̂ni(γ) = oP(1) uniformly

in γ. Therefore,

1√
n

n∑
i=1

[1{G̃i(γ, π
∗) ∈ (xτ (γ), xτ (γ)− µ̂n(γ)]} − 1{G̃i(γ, π

∗) ∈ (xτ (γ)− µ̂n(γ), xτ (γ)]}

=
1√
n

n∑
i=1

(
1{G̃i(γ, π

∗) ≤ xτ (γ)− µ̂ni(γ)} − Fγ(xτ (γ))
)
−
(
1{G̃i(γ, π

∗) ≤ xτ (γ)} − Fγ(xτ (γ))
)

=
1√
n

n∑
i=1

(
1{G̃i(γ, π

∗) ≤ xτ (γ)} − Fγ(xτ (γ))
)
+

1

n

n∑
i=1

fγ(xτ (γ))∇′
πG̃i(γ, π

∗)
√
n(π̂n − π∗)

− 1√
n

n∑
i=1

(
1{G̃i(γ, π

∗) ≤ xτ (γ)} − Fγ(xτ (γ))
)
+ oP(1)

=fγ(xτ (γ))E[∇′
πG̃i(γ, π

∗)]
√
n(π̂n − π∗) + oP(1),

where the second equality follows from that n−1/2
∑n

i=1 1{G̃i(γ, π
∗) ≤ xτ (γ)−µ̂ni(γ)} = n−1/2

∑n
i=1 1{

G̃i(γ, π
∗) ≤ xτ (γ)}+ n−∑n

i=1 F
′
γ(xτ (γ))

√
nµ̂ni(γ) + oP(1) and applying the mean-value theorem at the

limit. Note that F ′
γ(xτ (γ)) = fγ(xτ (γ)). Therefore,

1√
n

n∑
i=1

(
1{G̃i(γ, π

∗) +∇′
πG̃i(γ, π̄γn)(π̂n − π∗) ≤ ρτ (γ, θ

0
τ )} − τ

)
=

1√
n

n∑
i=1

(
1{G̃i(γ, π

∗) ≤ xτ (γ)} − τ
)
+ fγ(xτ (γ))E[∇′

πG̃i(γ, π
∗)]

√
n(π̂n − π∗) + oP(1)

=
1√
n

n∑
i=1

[(
1{G̃i(γ, π

∗) ≤ xτ (γ)} − τ
)
− fγ(xτ (γ))E[∇′

πG̃i(γ, π
∗)]P ∗−1Si

]
+ oP(1) (A.1)
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Given this, we compute the covariance kernel using the summand on the right side of (A.1), viz.,

E[[(1{G̃i(γ, π
∗) ≤ xτ (γ)} − τ) + fγ(xτ (γ))E[∇′

πG̃i(γ, π
∗)]P ∗−1Si]

× [(1{G̃i(γ
′, π∗) ≤ xτ (γ

′)} − τ) + fγ′(xτ (γ
′))E[∇′

πG̃i(γ
′, π∗)]P ∗−1Si]]

= E[(1{G̃i(γ, π
∗) ≤ xτ (γ)} − τ)(1{G̃i(γ, π

∗) ≤ xτ (γ)} − τ)]

− fγ(xτ (γ))E[∇′
πG̃i(γ, π

∗)]P ∗−1E[Si(1{G̃i(γ
′, π∗) ≤ xτ (γ

′)} − τ)]

− fγ′(xτ (γ
′))E[∇′

πG̃i(γ
′, π∗)]P ∗−1E[Si(1{G̃i(γ, π

∗) ≤ xτ (γ)} − τ)]

+ fγ(xτ (γ))E[∇′
πG̃i(γ, π

∗)]P ∗−1H∗P ∗−1E[∇πG̃i(γ
′, π∗)]fγ′(xτ (γ)).

Observing that E[(1{G̃i(γ, π
∗) ≤ xτ (γ)} − τ)(1{G̃i(γ, π

∗) ≤ xτ (γ)} − τ)] = κτ (γ, γ
′), the desired

covariance kernel κ̃τ (γ, γ′) is now obtained from this equality.

We next prove that the left side of (A.1) is stochastically equicontinuous. We let ς(γ) := fγ(xτ (γ))E[∇′
π

G̃i(γ, π
∗)]P ∗−1 for notational simplicity and show that the right side of (A.1) satisfies the bound condition

to apply Ossiander’s L2 entropy condition: for some C and ν > 0,

E

(
sup

∥γ−γ′∥<δ
|(1{G̃i(γ, π

∗) ≤ xτ (γ)}+ ς(γ)Si)− (1{G̃i(γ
′, π∗) ≤ xτ (γ

′)}+ ς(γ′)Si)|2
)1/2

≤ Cδν .

(A.2)

We here note that

sup
∥γ−γ′∥<δ

|(1{G̃i(γ, π
∗) ≤ xτ (γ)}+ ς(γ)Si)− (1{G̃i(γ

′, π∗) ≤ xτ (γ
′)}+ ς(γ′)Si)|2

≤ sup
∥γ−γ′∥<δ

|1{G̃i(γ, π
∗) ≤ xτ (γ)} − 1{G̃i(γ

′, π∗) ≤ xτ (γ
′)}|2

+ sup
∥γ−γ′∥<δ

∥ς(γ)− ς(γ′)∥ · ∥Si∥+ sup
∥γ−γ′∥<δ

|(ς(γ)− ς(γ′))Si)|2.

In the proof of Lemma 2, we already saw that there are C1 and ν1 > 0 such that

E

(
sup

∥γ−γ′∥<δ
|(1{G̃i(γ, π

∗) ≤ xτ (γ)})− (1{G̃i(γ
′, π∗) ≤ xτ (γ

′)})|2
)1/2

≤ C1δ
ν1 .

Next, Assumptions 2, 6, and 8 imply that ς(·) is Lipschitz continuous, because a composition of Lipschitz

continuous functions is Lipschitz continuous, and the product of two Lipschitz continuous functions is

Lipschitz continuous: for some m > 0, ∥ς(γ)− ς(γ′)∥ ≤ m∥γ − γ′∥, so that for some C2 and ν2 > 0,

E

(
sup

∥γ−γ′∥<δ
|(ς(γ)− ς(γ′))| · |Si|

)
≤ C2δ

ν2
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by letting C2 := ms ·maxj=1,...,s E[|Sij |2] and ν2 = 1. Note that maxj=1,...,s E[|Sij |2] < ∞ from Assump-

tion 7. We note that

|(ς(γ)− ς(γ′))Si)|2 ≤ max
j=1,...,s

E[Sij |2] · ∥ς(γ)− ς(γ′)∥2 ≤ max
j=1,...,s

E[Sij |2] ·m2∥γ − γ′∥2,

so that if we let C3 := m2 ·maxj=1,...,s E[|Sij |2] and ν3 = 2,

E

(
sup

∥γ−γ′∥<δ
|(ς(γ)− ς(γ′))Si|2

)
≤ C3δ

ν3 .

Therefore, if we let C := max[C1, C2, C3] and ν := max[ν1, ν2, ν3], the desired inequality in (A.2) follows.

This shows that

1√
n

n∑
i=1

(
1{G̃i(γ, π

∗) +∇′
πG̃i(γ, π̄γn)(π̂n − π∗) ≤ ρτ (γ, θ

0
τ )} − τ

)
is stochastically equicontinuous, completing the proof. ■

Proof of Theorem 4: Given Lemma 3, we note that∫
γ
∇θτρτ (γ, θ

0
τ )

1√
n

n∑
i=1

(
1{Ĝi(γ) ≤ ρτ (γ, θ

0
τ )} − τ

)
dQ(γ) ⇒

∫
γ
∇θτρτ (γ, θ

0
τ )G̃τ (γ)dQ(γ)

by applying the continuous mapping theorem. The final integral follows a normal distribution from the fact

that G̃τ (·) is a Gaussian stochastic process. By dominated convergence using Assumption 14,

E
[∫

γ
∇θτρτ (γ, θ

0
τ )G̃τ (γ)dQ(γ)

]
=

∫
γ
∇θτρτ (γ, θ

0
τ )E[G̃τ (γ)]dQ(γ) = 0 and

E
[∫

γ

∫
γ′
∇θτρτ (γ, θ

0
τ )G̃τ (γ)G̃τ (γ

′)∇θτρτ (γ
′, θ0τ )dQ(γ)dQ(γ′)

]
=

∫
γ

∫
γ′
∇θτρτ (γ, θ

0
τ )E[G̃τ (γ)G̃τ (γ

′)]∇′
θτρτ (γ, θ

0
τ )dQ(γ)dQ(γ′)

=

∫
γ

∫
γ′
∇θτρτ (γ, θ

0
τ )κ̃τ (γ, γ

′)∇′
θτρτ (γ, θ

0
τ )dQ(γ)dQ(γ′)

which is defined as B̃0
τ . Therefore,

∫
γ ∇θτρτ (γ, θ

0
τ )G̃τ (γ)dQ(γ) ∼ N (0, B̃0

τ ), implying that

√
n(θ̃τn − θ0τ ) ⇒ −A0−1

τ

∫
γ
∇θτρτ (γ, θ

0
τ )G̃τ (γ)dQ(γ) ∼ N (0, C̃0

τ ),

giving the desired result. ■
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Proof of Theorem 5: (i) As the proof of the consistency in (i) is almost identical to that of (ii), we prove

only (i).

(i.a) If we apply the mean-value theorem to ρτ (γ, θ̂τn) and ∇θρτ (γ, θ̂τn) around the unknown parameter

θ∗τ , for each γ, there are θ̄∗γ and θ́∗γ such that

ρτ (γ, θ̂τn) = ρτ (γ, θ
∗
τ ) +∇′

θτρτ (γ, θ̄
∗
τγ)(θ̂τn − θ∗τ ) and

∇θτρτ (γ, θ̂τn) = ρτ (γ, θ
∗
τ ) +∇′

θρτ (γ, θ́
∗
τγ)(θ̂τn − θ∗τ ).

For notational simplicity, let ν̂n(γ) := −∇′
θρτ (γ, θ̄

∗
γ)(θ̂τn − θ∗τ ). Given these expressions, note that

1{Gi(γ) ≤ ρτ (γ, θ̂τn)} − τ = 1{Gi(γ) ≤ ρτ (γ, θ
∗
τ )} − τ

+ 1{ρτ (γ, θ∗τ ) < Gi(γ) ≤ ρτ (γ, θ
∗
τ )− ν̂n(γ)} − 1{ρτ (γ, θ∗τ )− ν̂n(γ) < Gi(γ) ≤ ρτ (γ, θ

∗
τ )}

= 1{Gi(γ) ≤ ρτ (γ, θ
∗
τ )} − τ + oP(1) (A.3)

using the fact that 1{ρτ (γ, θ∗τ ) < Gi(γ) ≤ ρτ (γ, θ
∗
τ )−ν̂n(γ)} = oP(1) and 1{ρτ (γ, θ∗τ )−ν̂n(γ) < Gi(γ) ≤

ρτ (γ, θ
∗
τ )} = oP(1) from the fact that for each γ, ν̂n(γ) = oP(1). It follows that

Jτni :=

∫
γ
∇θτρτ (γ, θ̂τn)

(
1{Gi(γ) ≤ ρτ (γ, θ̂τn)} − τ

)
dQ(γ) + oP(1)

=

∫
γ
∇θτρτ (γ, θ

∗
τ ) (1{Gi(γ) ≤ ρτ (γ, θ

∗
τ )} − τ) dQ(γ) + oP(1) = Jτi + oP(1),

given that for each j and j′ = 1, 2, . . . , cτ , |∂2/(∂θτj∂θτj′)ρτ (·, ·)| ≤ M < ∞ and |∂/(∂θτj)ρτ (·, ·)| ≤
M < ∞ from Assumption 8. Thus,

B̂τn :=
1

n

n∑
i=1

JτniJ
′
τni =

1

n

n∑
i=1

JτiJ
′
τi + oP(1).

We now further note that for each j = 1, 2, . . . , cτ , E[J2
τij ] < ∞ from Assumption 8, so that it now follows

that B̂τn = 1
n

∑n
i=1 JτiJ

′
τi + oP(1)

P→ E[JτiJ ′
τi] =: B∗

τ . Therefore, B̂τn
P→ B∗

τ .

Proof of consistency of B̃τn is not detailed because it follows in a similar fashion to the consistency of

B̂τn. In particular, given the moment conditions in Assumption 8 and the condition for the other consistent

estimators for P ∗, H∗, and K∗
τ as given in Assumption 11, it follows that Ĵτni = Ĵτi+ oP(1), and the result

B̃τn
P→ B̃∗

τ follows.

(i.b) Given the second-order differentiability of ρτ (γ, ·) in Assumption 2 and Theorem 3(i), we apply

(A.3) to obtain that

1{Gi(γ) ≤ ρτ (γ, θ̂τn)} − τ = 1{Gi(γ) ≤ ρτ (γ, θ
0
τ )} − τ + oP(1),
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implying that κ̂τn(γ, γ′) = κ̂τ (γ, γ
′) + oP(1), where

κ̂τ (γ, γ
′) :=

1

n

n∑
i=1

(1{Gi(γ) ≤ ρτ (γ, θ
0
τ )} − τ)(1{Gi(γ) ≤ ρτ (γ, θ

0
τ )} − τ).

Furthermore, ∇θτρτ (·, θ̂τn)
P→ ∇θτρτ (·, θ0τ ) from the fact that θ̂τn

P→ θ0τ and the continuity of ρτ (·, ·).
Therefore, from the definition of B̂♯

τn, if κ̂τ (·, ·) is consistent for κτ (·, ·) uniformly on Γ × Γ, then the

desired result follows.

For the proof of the consistency of κ̂τ (·, ·), we note that

κ̂τ (γ, γ
′) :=

1

n

n∑
i=1

1{Gi(γ) ≤ ρτ (γ, θ
0
τ )}1{Gi(γ

′) ≤ ρτ (γ
′, θ0τ )}

− τ

n

n∑
i=1

1{Gi(γ) ≤ ρτ (γ, θ
0
τ )} −

τ

n

n∑
i=1

1{Gi(γ
′) ≤ ρτ (γ

′, θ0τ )}+ τ2.

Here, the uniform consistency of n−1
∑n

i=1 1{Gi(·) ≤ ρτ (·, θ0τ )} follows if {1{Gi(·) ≤ ρτ (·, θ0τ )}} is

stochastically equicontinuous as shown in Newey (1991). Note that the proof of Lemma 2 already shows

that {n−1
∑n

i=1 1{Gi(·) ≤ ρτ (·, θ0τ )}} is stochastically equicontinuous.

We therefore only show that {n−1
∑n

i=1 1{Gi(·) ≤ ρτ (·, θ0τ )}1{Gi(·′) ≤ ρτ (·′, θ0τ )}} is stochastically

equicontinuous for the uniform continuity of κ̂τ (·, ·), where “(·′)” is used to distinguish it from “(·)”. For this

purpose, we use Ossiander’s L2 entropy condition as in the proof of Lemma 2: if we let Ui(γ) := Fγ(Gi(γ))

be the PIT of Gi(γ) as in the proof of Lemma 2,

∣∣1{Gi(γ) ≤ ρτ (γ, θ
0
τ )}1{Gi(γ

′) ≤ ρτ (γ
′, θ0τ )} − 1{Gi(γ

′′) ≤ ρτ (γ
′′, θ0τ )}1{Gi(γ

′′′) ≤ ρτ (γ
′′′, θ0τ )}

∣∣
=
∣∣1{Ui(γ) ≤ τ}1{Ui(γ

′) ≤ τ} − 1{Ui(γ
′′) ≤ τ}1{Ui(γ

′′′) ≤ τ}
∣∣ ,

so that Ossiander’s L2 entropy condition requires that there are are ν > 0 and C > 0 such that

E

[
sup

∥(γ,γ′)−(γ′′,γ′′′)∥<δ

∣∣1{Ui(γ) ≤ τ}1{Ui(γ
′) ≤ τ} − 1{Ui(γ

′′) ≤ τ}1{Ui(γ
′′′) ≤ τ}

∣∣2] ≤ C0δν .

(A.4)

We first note that

∣∣1{Ui(γ) ≤ τ}1{Ui(γ
′) ≤ τ} − 1{Ui(γ

′′) ≤ τ}1{Ui(γ
′′′) ≤ τ}

∣∣
= |1{Ui(γ) ≤ τ}(1{Ui(γ

′) ≤ τ} − 1{Ui(γ
′′) ≤ τ})

+ 1{Ui(γ
′′) ≤ τ}(1{Ui(γ) ≤ τ} − 1{Ui(γ

′′′) ≤ τ})|

≤
∣∣1{Ui(γ

′) ≤ τ} − 1{Ui(γ
′′) ≤ τ}

∣∣+ ∣∣1{Ui(γ) ≤ τ} − 1{Ui(γ
′′′) ≤ τ}

∣∣ .
8



Therefore,

E

[
sup

∥(γ,γ′)−(γ′′,γ′′′)∥<δ

∣∣1{Ui(γ) ≤ τ}1{Ui(γ
′) ≤ τ} − 1{Ui(γ

′′) ≤ τ}1{Ui(γ
′′′) ≤ τ}

∣∣2]

≤ 2E

[
sup

∥γ−γ′′∥<δ

∣∣1{Ui(γ) ≤ τ} − 1{Ui(γ
′′) ≤ τ}

∣∣2]

+ 2E

[
sup

∥γ−γ′∥<δ

∣∣1{Ui(γ) ≤ τ} − 1{Ui(γ
′) ≤ τ}

∣∣ · sup
∥γ′′−γ′′′∥<δ

∣∣1{Ui(γ
′′) ≤ τ} − 1{Ui(γ

′′′) ≤ τ}
∣∣] .

We here note that

E

[
sup

∥γ−γ′∥<δ

∣∣1{Ui(γ) ≤ τ} − 1{Ui(γ
′) ≤ τ}

∣∣ · sup
∥γ′′−γ′′′∥<δ

∣∣1{Ui(γ
′′) ≤ τ} − 1{Ui(γ

′′′) ≤ τ}
∣∣]2

≤ E

( sup
∥γ−γ′∥<δ

∣∣1{Ui(γ) ≤ τ} − 1{Ui(γ
′) ≤ τ}

∣∣)2


× E

( sup
∥γ′′−γ′′′∥<δ

∣∣1{Ui(γ
′′) ≤ τ} − 1{Ui(γ

′′′) ≤ τ}
∣∣)2


by applying Cauchy-Schwarz. Note that

E

{ sup
∥γ′′−γ′′′∥<δ

∣∣1{Ui(γ
′′) ≤ τ} − 1{Ui(γ

′′′) ≤ τ}
∣∣}2


≤ E

[
sup

∥γ′′−γ′′′∥<δ

∣∣1{Ui(γ
′′) ≤ τ} − 1{Ui(γ

′′′) ≤ τ}
∣∣2] .

It follows that

E

[
sup

∥γ−γ′∥<δ

∣∣1{Ui(γ) ≤ τ} − 1{Ui(γ
′) ≤ τ}

∣∣ · sup
∥γ′′−γ′′′∥<δ

∣∣1{Ui(γ
′′) ≤ τ} − 1{Ui(γ

′′′) ≤ τ}
∣∣]2

≤ E

[
sup

∥γ′′−γ′′′∥<δ

∣∣1{Ui(γ
′′) ≤ τ} − 1{Ui(γ

′′′) ≤ τ}
∣∣2]2 ,
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implying that

E

[
sup

∥(γ,γ′)−(γ′′,γ′′′)∥<δ

∣∣1{Ui(γ) ≤ τ}1{Ui(γ
′) ≤ τ} − 1{Ui(γ

′′) ≤ τ}1{Ui(γ
′′′) ≤ τ}

∣∣2]

≤ 2E

[
sup

∥γ−γ′′∥<δ

∣∣1{Ui(γ) ≤ τ} − 1{Ui(γ
′′) ≤ τ}

∣∣2]

+ 2E

[
sup

∥γ′′−γ′′′∥<δ

∣∣1{Ui(γ
′′) ≤ τ} − 1{Ui(γ

′′′) ≤ τ}
∣∣2]

= 4E

[
sup

∥γ′′−γ′′′∥<δ

∣∣1{Ui(γ
′′) ≤ τ} − 1{Ui(γ

′′′) ≤ τ}
∣∣2] .

We have already seen in the proof of Lemma 2 that there are ν > 0 and C > 0 such that

E

[
sup

∥γ′′−γ′′′∥<δ

∣∣1{Ui(γ
′′) ≤ τ} − 1{Ui(γ

′′′) ≤ τ}
∣∣2] ≤ Cδν ,

so that

E

[
sup

∥(γ,γ′)−(γ′′,γ′′′)∥<δ

∣∣1{Ui(γ) ≤ τ}1{Ui(γ
′) ≤ τ} − 1{Ui(γ

′′) ≤ τ}1{Ui(γ
′′′) ≤ τ}

∣∣2] ≤ 4Cδν .

We now let C0 := 4C in (A.4) for the same ν to complete the proof that {n−1
∑n

i=1 1{Gi(·) ≤ ρτ (·, θ0τ )}1{
Gi(·′) ≤ ρτ (·′, θ0τ )}} is stochastically equicontinuous. This completes the proof. ■

Proof of Theorem 6: Theorem 3 (ii) implies that for each j = 1, 2, . . . , p, n−1/2
∑n

i=1 Ĵτji
A∼ N (0, B̃∗

τj ).

In addition, B̃∗
τ is positive definite by Assumption 15. It therefore follows by the Cramér-Wold device that

n−1/2
∑n

i=1 Ĵi
A∼ N (0, B̃∗), so that

√
n(θ̃n − θ∗) = −A∗−1n−1/2

∑n
i=1 Ĵi + oP(1)

A∼ N (0, C̃∗). ■

Proof of Lemma 4: To show the claim, for each j = 1, 2, . . . , p, we first let

ω̂nj(γ) :=
1√
n

n∑
i=1

1{Ĝi(γ) ≤ ρτj (γ, θ
0
τj )}

for notational simplicity. Second, note that Lemma 3 implies that for any ϵj > 0 and ηj > 0, there exist n0j

and δj > 0 such that if n > n0j ,

P

(
sup

∥γ−γ′∥<δj

∣∣ω̂nj(γ)− ω̂nj(γ
′)
∣∣ > ϵj

)
< ηj . (A.5)

Third, applying the Cramér-Wold device gives the desired result. That is, for all λ ∈ Rp such that λ′λ = 1,
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if we show that for all ϵ > 0 and η > 0, there are n0 and δ > 0 such that if n > n0,

P

 sup
∥γ−γ′∥<δ

∣∣∣∣∣∣
p∑

j=1

λj(ω̂nj(γ)− τj)−
p∑

j=1

λj(ω̂nj(γ
′)− τj)

∣∣∣∣∣∣ > ϵ

 < η, (A.6)

the desired result follows as in Wooldridge and White (1988, proposition 4.1). Here, for each j = 1, 2, . . . , p,

λj denotes the j-th row element of λ.

To show (A.6), we let ϵ > 0 and η > 0 and show the stochastic equicontinuity using its definition.

If λj ̸= 0, we let ϵj and ηj be ϵ/(p · |λj |) and η/p, respectively. Then, it follows that if n > n0 :=

max[n01, n02, . . . , n0p],

P

(
sup

∥γ−γ′∥<δj

∣∣ω̂nj(γ)− ω̂nj(γ
′)
∣∣ > ϵ

p · |λj |

)
<

η

p

from (A.5). On the other hand, if λj = 0,

P

(
sup

∥γ−γ′∥<δj

|λj | ·
∣∣ω̂nj(γ)− ω̂nj(γ

′)
∣∣ > ϵ

p

)
= 0 <

η

p
.

Therefore,
p∑

j=1

P

(
sup

∥γ−γ′∥<δj

|λj | ·
∣∣ω̂nj(γ)− ω̂nj(γ

′)
∣∣ > ϵ

)
< η,

and we also note that

η >

p∑
j=1

P

(
sup

∥γ−γ′∥<δj

|λj | ·
∣∣ω̂nj(γ)− ω̂nj(γ

′)
∣∣ > ϵ

)
≥ P

 p∑
j=1

sup
∥γ−γ′∥<δj

|λj | ·
∣∣ω̂nj(γ)− ω̂nj(γ

′)
∣∣ > ϵ


≥ P

 p∑
j=1

sup
∥γ−γ′∥<δj

∣∣λj{ω̂nj(γ)− ω̂nj(γ
′)}
∣∣ > ϵ

 ≥ P

 p∑
j=1

sup
∥γ−γ′∥<δ

∣∣λj(ω̂nj(γ)− ω̂nj(γ
′))
∣∣ > ϵ


by letting δ := min[δ1, δ2, . . . , δp]. That is, for each ϵ > 0 and η > 0, there are n0 and δ > 0 such that

P

 sup
∥γ−γ′∥<δ

∣∣∣∣∣∣
p∑

j=1

λj(ω̂nj(γ)− τj)−
p∑

j=1

λj(ω̂nj(γ
′)− τj)

∣∣∣∣∣∣ > ϵ

 < η.

This completes the proof. ■
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Proof of Theorem 7: Given Lemma 4, note that∫
γ
∇θρ(γ, θ

0)
1√
n

n∑
i=1

(
1{Ĝi(γ) ≤ ρ(γ, θ0)} − τ

)
dQ(γ) ⇒

∫
γ
∇θρ(γ, θ

0)G̃(γ)dQ(γ)

by continuous mapping. Further note that the final integral follows a normal distribution from the fact that

for each j = 1, 2, . . . , p, G̃τj (·) is a Gaussian stochastic process. By dominated convergence theorem using

Assumption 16,

E
[∫

γ
∇θρ(γ, θ

0)G̃(γ)dQ(γ)

]
=

∫
γ
∇θρ(γ, θ

0)E[G̃(γ)]dQ(γ) = 0, and

defining κ̃(·, ·) : Γ × Γ 7→ Rp×p such that its j-th row and j′-th column element is κ̃τj ,τj′ (·, ·) given in

Lemma 4,

E
[∫

γ

∫
γ′
∇θρ(γ, θ

0)G̃(γ)G̃(γ′)∇θρ(γ
′, θ0)dQ(γ)dQ(γ′)

]
=

∫
γ

∫
γ′
∇θρ(γ, θ

0)E[G̃(γ)G̃(γ′)′]∇′
θρ(γ, θ

0)dQ(γ)dQ(γ′)

=

∫
γ

∫
γ′
∇θρ(γ, θ

0)κ̃(γ, γ′)∇′
θρ(γ, θ

0)dQ(γ)dQ(γ′)

which yields B̃0. Therefore,
∫
γ ∇θρ(γ, θ

0)G̃(γ)dQ(γ) ∼ N (0, B̃0). Given that B̃0 is positive definite by

Assumption 16, it follows that

√
n(θ̃n − θ0) ⇒ −A0−1

∫
γ
∇θρ(γ, θ

0)G̃(γ)dQ(γ) ∼ N (0, C̃0),

as desired, completing the proof. ■

Proof of Lemma 5: Since the asymptotic approximation of θ̄n is the same as that of θ̈n, we prove only (ii).

Given that q̂n(·) is stochastically differentiable in the sense of Pollard (1985, theorem 5), we can construct

the Lagrange function to obtain the CTSFQR estimator (see also Newey and McFadden, 1994, section 7).

The asymptotic first-order conditions are

ΩQ̈n + D̈′
nλ̈n = oP(1) and R(θ̈n) ≡ 0, (A.7)

where λ̈n stands for the asymptotic Lagrange multiplier. Note further that

ΩQ̈n = ΩQ̂n +ΩA∗(θ̈n − θ∗) + oP(1) and R(θ̈n) = R(θ∗) +D∗(θ̃n)(θ̈n − θ∗) + oP(1), (A.8)
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where Q̂n := (n−1
∑n

i=1 Ĵi). Solving for (θ̈n − θ∗) from these two conditions, it now follows that

√
n(θ̈n − θ∗) = ((ΩA∗)−1 + (ΩA∗)−1D∗′E∗−1D∗(ΩA∗)−1)

√
nΩQ̈n

+ ((ΩA∗)−1D∗′E∗−1)
√
nR(θ∗) + oP(

√
n),

where E∗ := −D∗(ΩA∗)−1D∗′ and
√
nΩQ̂n

A∼ N (0,ΩB̃∗Ω) by applying Theorem 6. Next,

((ΩA∗)−1 + (ΩA∗)−1D∗′E∗−1D∗(ΩA∗)−1)
√
nΩQ̈n

A∼ N (0,(ΩA∗)−1[(ΩA∗) +D∗′E∗−1D∗](ΩA∗)−1ΩB̃∗Ω(ΩA∗)−1[(ΩA∗) +D∗′E∗−1D∗](ΩA∗)−1).

Here, we note that Ω and A∗ are block diagonal matrices, so that the given asymptotic variance matrix

simplifies to

[I + (ΩA∗)−1D∗′E∗−1D∗]C̃∗[I +D∗′E∗−1D∗(ΩA∗)−1],

so that
√
n{(θ̈n−θ∗)−((ΩA∗)−1D∗′E∗−1)R(θ∗)} A∼ N (0, [I+(ΩA∗)−1D∗′E∗−1D∗]C̃∗[I+D∗′E∗−1D∗

(ΩA∗)−1]). Substituting −D∗(ΩA∗)−1D∗′ for E∗, the desired result follows. ■

Proof of Theorem 8: (ii) Since the proofs of (i) are almost identical to those of (ii), we prove only (ii).

(ii.a) Applying the mean-value theorem, R(θ̃n) = R(θ∗) +∇′
θR(θ♭n)(θ̃n − θ∗) for some θ♭n between θ̃n

and θ∗, and if Ho is imposed,
√
nR(θ̃n) = ∇′

θR(θ♭n)
√
n(θ̃n − θ∗). Note that θ♭n

P→ θ∗, so that
√
nR(θ̃n) =

∇′
θR(θ∗)

√
n(θ̃n − θ∗) + oP(1). Therefore,

√
nR(θ̃n) = ∇′

θR(θ∗)
√
n(θ̃n − θ∗)

A∼ N (0,∇′
θR(θ∗)C̃∗∇θR

(θ∗)) by Theorem 6 (ii). Since D̃n
P→ ∇′

θR(θ∗) it follows that D̃nC̃nD̃
′
n consistently estimates the asymp-

totic variance matrix of
√
nR(θ̃n) from the fact that Ãn is consistent for A∗. It therefore follows that

Ẅn := nR(θ̃n)
′{D̃nC̃nD̃

′
n}−1R(θ̃n)

A∼ X 2
r under Ho.

Under Ha,
√
nR(θ̃n) =

√
nR(θ∗) + ∇′

θR(θ♭n)
√
n(θ̃n − θ∗), so that

√
nR(θ̃n) = OP(

√
n) because

√
nR(θ∗) = O(

√
n) and ∇′

θR(θ♭n)
√
n(θ̃n − θ∗) = OP(1), implying that Ẅn = OP(n). Therefore, if

cn = o(n), limn→∞ P(Ẅ ≥ cn) = 1.

(ii.b) Solving for λ̈n from (A.7) and (A.8),
√
nλ̈n = −(E∗−1D∗(ΩA∗)−1)

√
nΩQ̂n − E∗−1√nR(θ∗)

+oP(
√
n). Given that

√
nΩQ̂n

A∼ N (0,ΩB̃∗Ω), it follows that

√
nλ̈n + E∗−1√nR(θ∗)

A∼ N (0, E∗−1D∗C̃∗D∗′E∗−1), (A.9)

so that, if Ho holds, R(θ∗) = 0 and

nλ̈′
n{E∗−1D∗C̃∗D∗′E∗−1}−1λ̈n

A∼ X 2
r . (A.10)

Note that {E∗−1D∗C̃∗D∗′E∗−1}−1 = E∗(D∗C̃∗D∗′)−1E∗ = D∗(ΩA∗)−1D∗′(D∗C̃∗D∗′)−1D∗ (ΩA∗)−1
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D∗′ using the fact that E∗ := −D∗(ΩA∗)−1D∗′. Therefore,

nλ̈′
n{E∗−1D∗C̃∗D∗′E∗−1}−1λ̈n = nλ̈′

nD
∗(ΩA∗)−1D∗′(D∗C̃∗D∗′)−1D∗(ΩA∗)−1D∗′λ̈n

= nλ̈′
nD̈n(ΩA

∗)−1D̈′
n(D̈nC̈nD̈

′
n)

−1D̈n(ΩA
∗)−1D̈nλ̈n + oP(1)

= nQ̈′
nA

∗−1D̈′
n(D̈nC̈nD̈

′
n)

−1D̈nA
∗−1Q̈n + oP(1),

where the penultimate equality follows because D̈n
P→ D∗ and B̈n

P→ B∗ under Ho, as implied by Lemma

5 and the consistency of Ãn for A∗. The last equality follows from (A.7) and the fact that Ω is a diagonal

matrix. Note that this final expression is asymptotically equivalent to the definition of ¨LMn. So the desired

result now follows from (A.10).

Under Ha, note that ΩQ̈n + D̈nλ̈n = oP(1) from (A.7) and
√
nλ̈n = OP(

√
n) from (A.9), so that

√
nQ̈n = OP(

√
n). Furthermore, D̈n = OP(1) and B̈n = OP(1) from Assumption 18, implying that

¨LMn = OP(n). Therefore, if cn = o(n), limn→∞ P( ¨LMn ≥ cn) = 1.

(ii.c) Given stochastic differentiability of q̂n(·) in the sense of Pollard (1985, theorem 5), we can apply a

second-order Taylor expansion around θ̃n, so that 2n{q̂n(θ̈n)− q̂n(θ̃n)} = n(θ̈n− θ̃n)
′ΩA∗(θ̈n− θ̃n)+oP(1)

using the fact that the stochastic second derivative of q̂n(·) is asymptotically equal to ΩA∗ at θ∗. The proof of

Lemma 5 already showed that
√
n(θ̈n − θ∗)− (ΩA∗)−1√nΩQ̈n = {(ΩA∗)−1D∗E∗−1D∗′(ΩA∗)−1}

√
nΩ

Q̈n + ((ΩA∗)−1D∗E∗−1)
√
nR(θ∗) + oP(

√
n), from which we further note that (ΩA∗)−1√nΩQ̈n = A∗−1

√
nQ̈n = (θ̃n − θ∗) + oP(1) as implied by Theorem 6. It follows that

√
n(θ̈n − θ̃n) = {(ΩA∗)−1D∗E∗−1D∗′(ΩA∗)−1}

√
nΩQ̈n + ((ΩA∗)−1D∗E∗−1)

√
nR(θ∗) + oP(

√
n).

Hence, if Ho holds,

2n{q̂n(θ̈n)− q̂n(θ̃n)} = nQ̈′
nΩ(ΩA

∗)−1D∗′E∗−1{D∗(ΩA∗)−1D∗′}E∗−1D∗(ΩA∗)−1ΩQ̈n + oP(1)

= nQ̈′
nA

∗−1D∗′{D∗(ΩA∗)−1D∗′}−1D∗A∗−1Q̈n + oP(1),

since E∗ := −D∗(ΩA∗)−1 D∗′. We further note that
√
nD∗A∗−1Q̈n ⇒ W̃ ∼ N (0, D∗A∗−1B̃∗A∗−1D∗′).

It therefore follows that ¨QLRn := 2n{q̂n(θ̈n) − q̂n(θ̃n)} ⇒ W̃ ′{D∗(ΩA∗)−1D∗′}−1W̃ under Ho, as

desired.

Under Ha,
√
n(θ̈n − θ̃n) = OP(

√
n) since {(ΩA∗)−1D∗′E∗−1D∗(ΩA∗)−1}

√
nΩQ̈n = OP(1) and

R(θ∗) ̸= 0, so that ¨QLRn = OP(n). Therefore, if cn = o(n), limn→∞ P( ¨QLRn ≥ cn) = 1. This

completes the proof. ■

A.2 Supplementary empirical applications

This section provides additional empirical material for Section 8. First, we provide the estimated ρτ (·) for

each group classified by gender and education. Using quadratic, cubic and quartic models for xτ (·), Figure

14



A.1 plots the estimated LIPs using work experiences over 0–40 years, and Figure A.2 plots the estimated

LIPs using work experience over 10–40 years. The red, blue, and green lines in the figures denote the fitted

LIPs obtained by the quadratic, cubic, and quartic specifications, respectively. The (three colored) curves at

the top and the curves at the bottom of each figure are the estimated quantile LIPs for τ = 0.75 and τ = 0.25,

respectively. The (three colored) curves in the middle of each figure are the median quantile functions for

τ = 0.5. As is apparent in the two figures, the shapes of the estimated quantile curves differ between Figures

A.1 and A.2. In particular, the curves in Figure A.2 generally have less curvature and are closer to linearity

than those of Figure A.1 which show different patterns depending on the polynomial specification. Further,

the fitted quantile functions differ among the polynomial function specification. This feature indicates that

the overall shape of the quantile function curve requires a reasonable degree of nonlinearity to accommodate

the irregular patterns of the first 10 experience years in the income profiles.

Second, we report the estimation errors measured by qτn(θ̂τ ) in each group specification, capturing

the value of the criterion function (2) at the estimate θ̂τ . Tables A.1 and A.2 display the errors in the

estimated LIPs using work experiences over 0–40 years and 10–40 years, respectively. As shown in the

tables, the quartic specification provides the smallest qτn(θ̂τ ), and the quadratic specification yields the

largest qτn(θ̂τ ) among the three specifications. Nonetheless, the quadratic, cubic, and quartic models yield

similar estimation errors overall. In the lower panel of each table, we also report qτn(θ̂τ ) computed using

the rescaled income paths that are obtained by dividing each individual LIP with its integral over the entire

working experience profile. As in the nonscaled data case, the estimation errors decline as the degree of the

polynomial function rises, although the overall results remain similar.

15



Estimated errors of the quantiles of the original log income path

Male Female
Quadratic Cubic Quartic Quadratic Cubic Quartic

τ = 0.25

w/o Degree 12.00 11.98 11.96 11.13 11.12 11.10
Bachelor 10.82 10.77 10.67 10.25 10.20 10.10
Master 10.93 10.70 10.59 9.91 9.80 9.68
Ph.D 10.62 10.35 10.20 10.65 10.55 10.43

τ = 0.5

w/o Degree 14.23 14.23 14.20 13.92 13.92 13.89
Bachelor 13.52 13.39 13.27 12.87 12.80 12.67
Master 13.59 13.28 13.16 12.22 12.06 11.89
Ph.D 13.59 13.31 13.14 13.56 13.39 13.26

τ = 0.75

w/o Degree 11.04 11.03 11.01 11.06 11.05 11.01
Bachelor 10.86 10.66 10.61 10.29 10.21 10.11
Master 10.85 10.58 10.52 9.78 9.66 9.54
Ph.D 11.40 11.04 11.04 10.80 10.60 10.55

Estimated errors of the quantiles of the rescaled log income path

Male Female
Quadratic Cubic Quartic Quadratic Cubic Quartic

τ = 0.25

w/o Degree 5.87 5.85 5.76 5.63 5.63 5.56
Bachelor 6.13 6.10 5.86 6.03 6.02 5.85
Master 6.47 6.35 6.03 6.21 6.16 5.88
Ph.D 6.45 6.27 5.85 6.58 6.54 6.22

τ = 0.5

w/o Degree 6.83 6.83 6.77 6.65 6.65 6.59
Bachelor 7.11 7.07 6.80 6.95 6.95 6.76
Master 7.56 7.38 6.99 7.15 7.07 6.83
Ph.D 7.53 7.28 6.79 7.50 7.48 7.21

τ = 0.75

w/o Degree 5.20 5.20 5.19 5.04 5.02 5.01
Bachelor 5.38 5.29 5.10 5.25 5.19 5.05
Master 5.72 5.50 5.23 5.32 5.20 5.06
Ph.D 5.70 5.46 5.14 5.62 5.51 5.36

Table A.1: ESTIMATION ERRORS USING FUNCTION DATA OVER 0 TO 40 WORK EXPERIENCE YEARS.
This table shows the estimation errors of the original and rescaled log income paths using the quadratic,
cubic and quartic models for each group of the workers classified according to their education levels and
genders.
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Estimated errors of the quantiles of the log income path

Male Female
Quadratic Cubic Quartic Quadratic Cubic Quartic

τ = 0.25

w/o Degree 8.97 8.94 8.94 8.12 8.10 8.10
Bachelor 7.92 7.89 7.89 7.31 7.29 7.28
Master 7.91 7.90 7.90 7.07 7.06 7.06
Ph.D 7.65 7.63 7.62 7.57 7.56 7.55

τ = 0.5

w/o Degree 10.65 10.64 10.63 10.19 10.18 10.18
Bachelor 9.89 9.87 9.86 9.27 9.25 9.24
Master 9.89 9.88 9.87 8.74 8.72 8.72
Ph.D 9.93 9.90 9.89 9.82 9.80 9.80

τ = 0.75

w/o Degree 8.28 8.27 8.27 8.10 8.09 8.09
Bachelor 7.89 7.88 7.88 7.47 7.46 7.45
Master 7.84 7.82 7.82 7.13 7.11 7.11
Ph.D 8.32 8.32 8.32 7.95 7.95 7.95

Estimated errors of the quantiles of the rescaled log income path

Male Female
Quadratic Cubic Quartic Quadratic Cubic Quartic

τ = 0.25

w/o Degree 3.99 3.90 3.89 3.86 3.79 3.78
Bachelor 3.87 3.81 3.80 3.90 3.85 3.84
Master 3.79 3.74 3.74 3.81 3.75 3.75
Ph.D 3.70 3.65 3.63 3.82 3.76 3.75

τ = 0.5

w/o Degree 4.68 4.63 4.61 4.61 4.57 4.56
Bachelor 4.54 4.49 4.48 4.57 4.54 4.53
Master 4.43 4.39 4.38 4.44 4.42 4.41
Ph.D 4.34 4.30 4.28 4.56 4.53 4.52

τ = 0.75

w/o Degree 3.54 3.53 3.51 3.50 3.49 3.48
Bachelor 3.43 3.42 3.41 3.46 3.46 3.45
Master 3.35 3.35 3.34 3.32 3.33 3.32
Ph.D 3.27 3.26 3.25 3.46 3.46 3.45

Table A.2: ESTIMATION ERRORS USING FUNCTION DATA OVER 10 TO 40 WORK EXPERIENCE YEARS.
This table shows the estimation errors of the original and rescaled log income paths under the quadratic,
cubic, and quartic for each group of the workers classified according to their education levels and genders.
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Figure A.1: ESTIMATED QUANTILE FUNCTIONS OVER 0 TO 40 WORK EXPERIENCE YEARS USING THE

ORIGINAL LIPS.
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Figure A.2: ESTIMATED QUANTILE FUNCTIONS OVER 10 TO 40 WORK EXPERIENCE YEARS USING

THE ORIGINAL LIPS.
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