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Abstract

This paper presents a dual approach to the standard agency model. We formulate the dual
problem corresponding to the principal-agent problem under the assumption that the first-
order approach (FOA) is valid. This dual formulation generates a convex conjugate of a distinc-
tive form, which transforms the agent’s utility from compensation into a dual functional. The
dual problem features a simple convex structure, which enables us to perform a comprehensive
analysis for the primal problem. We derive novel and more tractable conditions for existence
and uniqueness of an optimal FOA contract in terms of the functional. Furthermore, the dual
approach provides us with illuminating insights into the previous nonexistence results.
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1. Introduction

This paper concerns about the static principal-agent problem under moral hazard. The principal
delegates a single task to the agent who privately chooses a productive action on behalf of the
principal, but their preferred actions are not perfectly aligned. Thus, the principal designs a com-
pensation scheme to provide a proper incentive for the agent to act in the principal’s best interest.
The problem of how to pay for performance can be formulated as a cost-minimization problem,
together with two constraints for the agent’s participation and incentive. Since its theoretical
framework was developed by the seminal work by Ross (1973), the agency problem has been one
of the central questions in several disciplines of economics and has been extensively studied in lit-
erature with a variety of additional constraints on payment. Unfortunately, albeit its significance,

“We would like to thank seminar participants at the Aalto University, Norwegian School of Economics, Yonsei
University, and East Asian Contract Theory Conference. Part of this research project has been carried out when Chi
visited the University of Calgary. Chi would like to thank the Haskayne School of Business at the University of Calgary
for their kind hospitality and support during his stay.

tChi: ck.changkoo@yonsei.ac.kr (Corresponding Author); Choi: k jchoi@ucalgary.ca


mailto:ck.changkoo@yonsei.ac.kr
mailto:kj.choi@haskayne.ucalgary.ca

J( 20) /I
1

1

Figure 1: Geometric Illustration of the Lagrange Duality

the literature has provided no comprehensive analysis for existence of an optimal contract in this
classic problem. To be specific, it is well documented that a cost minimizing contract does exist
in fairly general environments when the agent’s utility from compensation is bounded below at
the subsistence level (e.g., Kadan, Reny and Swinkels (2017)), but on the other hand, existence
may fail for different reasons when his utility is unbounded below (Mirrlees (1979) and Moroni
and Swinkels (2014)). However, since the literature has adopted distinct approaches to the same
problem for establishing the positive and negative results, it is rather difficult to integrate insights
into the existence.

The main purpose of this paper is to develop an alternative approach to the agency problem, so
that we can look into the existence issue in a full and comprehensive manner. To be precise, our
approach is independent of whether the agent’s utility is bounded below, or whether compensa-
tion is bounded due to limited liability, establishing existence of an optimal contract or identifying
the exact cause of its failure. To this end, we employ basic tools for convex analysis (Luenberger
(1969)), to formulate and analyze the Lagrange dual of the agency (or primal) problem. As in a
convex optimization problem, the dual problem provides a new perspective of the primal problem
at a different angle. Its comparative advantage for analysis of the agency problem is straightfor-
ward. While the primal problem involves the infinite-dimensional choice set (i.e., the contract
space) in case of a continuous outcome distribution, which is often not easy to handle, the dual in-
volves a finite-dimensional choice set (i.e., the set of separating hyperplanes). Furthermore, it turns
out that in contrast with the former, the dual problem possesses nice convex properties, facilitating
our analysis with the familiar tools for optimization.

The key idea of the Lagrange duality can be best understood in the context of the so-called mini-
mum norm problem, which is displayed in Figure 1. For an illustration, consider the primal problem
of minimizing the distance from a point (labeled A) to a convex set W. Then its Lagrange dual
problem can be formulated with the distance between the point A and a supporting hyperplane



separating A from the set W. Denoting each objective by d(A, w) and J(zo) with the normal vector
zo to a hyperplane, it is self-evident from Figure 1 that the shortest distance to the set W is equal
to the maximum distance to a hyperplane:

maxJ(zo) = inf d(A,w). (LD)
weW
Consequently, the original minimization problem can be equivalently put as the maximization
problem over hyperplanes, provided that the Lagrange duality (LD) holds. The close relationship
between these two problems can be used to develop a simple criterion for existence. In fact, strong
duality (LD) guarantees at least existence of a solution z; to the dual problem, which in turn
guarantees existence of a solution w* to the primal problem as long as w* is an element of W.

We apply this fundamental result to the principal-agent problem of moral hazard and derive
sufficient conditions for existence or nonexistence of an optimal contract. For this purpose, we
convert the principal’s problem for a cost-minimizing contract into the corresponding dual prob-
lem, under the assumption that the agent’s incentive constraints can be replaced by a local condi-
tion.! Whenever this local approach is justified, the dual is then an optimization problem over a
pair of Lagrange multipliers for the participation and incentive constraints. As in a convex opti-
mization problem, this conversion process gives rise to a convex conjugate which transforms the
agent’s utility from compensation into a function of the multipliers. However, the conjugate in the
agency model takes a distinctive form, which we shall refer to as the dual convex functional. The
functional is used not only to characterize the objective function of the dual problem, but to create
a link to the primal problem in the sense that the functional is uniquely determined by the agent’s
utility function. We then establish the Lagrange duality in the agency model under regularity
conditions for non-degeneracy, justifying our approach to the dual problem.

With the established duality, we next derive novel conditions for existence and its failure in
terms of the dual functional instead of the agent’s utility. This approach has two merits rela-
tive to the previous approaches of the primal problem. First, as is highlighted above, the dual
problem features a simple framework with a two-dimensional control vector, in which we can
derive conditions for existence or nonexistence in a unified and more systematic way. In partic-
ular, our conditions on the dual functional accommodate other conditions essential for existence,
such as non-degeneracy of the primal problem, thereby helping us easily check on existence. Sec-
ond, and more importantly, the dual approach lends better insights into the previous examples of
nonexistence as well. In addition to the noted example by Mirrlees (1979), the paper by Moroni
and Swinkels (2014) demonstrates that when the agent’s utility is unbounded below, the primal
problem is possibly degenerate and thus an optimal contract fails to exist for a different reason.
Since the control vector of the dual problem indicates base pay and pay-performance sensitivity,

IThis first-order approach (FOA) does restrict the agent’s possible deviations from the recommended action and is
typically valid under restrictive conditions (e.g., Rogerson (1985), Jewitt (1988) and Conlon (2009) among others). In
response, recent studies such as Renner and Schmedders (2015) and Ke and Ryan (2018) develop alternative methods
of characterizing an optimal contract without relying on FOA, but nonetheless the approach is still widely adopted by
practitioners.



our analysis does not only provide a clear intuition behind the previous nonexistence results but
helps identify a condition for possible degeneracy in other environments.

This paper contributes to the literature on existence of an optimal incentive-compatible contract
in the principal-agent model with moral hazard. While the previous literature (e.g., Holmstrom
(1979), Page (1987), Kadan et al. (2017) among others) seeks to establish the existence through anal-
ysis of the principal’s primal problem, we examine this significant issue from the dual perspective.
As our dual analysis is based on validity of the first-order approach in the primal problem, our
results on existence in Section 4.1 (where we address the models with the agent’s utility bounded
below) are rather restrictive compared to the general existence result of Kadan ef al. (2017). How-
ever, our aim in the current paper is not to establish existence in a more general setting but to
develop a unified approach to the issue in the most rudimentary agency model. There are two
reasons for this. First, the approach yields a simple condition for existence in terms of the dual el-
ement. In particular, since our condition is also sufficient for duality (LD) to hold, we can dispense
with regularity conditions such as non-degeneracy. Second, and more importantly, the same ap-
proach is applicable even when the agent’s utility is unbounded below, to derive conditions even
for nonexistence of an optimal contract. Therefore, the unified approach helps gain better insights
into the previous nonexistence results as well.

Our dual approach is inspired by Jewitt (2007) and Jewitt, Kadan and Swindkels (2008), both
of which formulated the dual problem from the standard convex conjugate, also known as
the Lagrange-Fenchel transform, under the assumption that the given agency problem is non-
degenerate so duality holds. However, as we can deduce from Moroni and Swinkels (2014), the
regularity condition is not always satisfied in an agency model, for example, in case of bounded
payment due to limited liability or bounded likelihood ratios. Our work based on a distinct
type of conjugate generalizes their approaches in that we do not assume non-degeneracy of the
primal problem; instead, we identify tight conditions on the dual convex functional which ensure
existence of a feasible contract, thereby establishing the close relationship between the primal and
dual problems.

The rest of the paper is organized as follows. Section 2 presents the principal’s primal problem of
minimizing a cost for implementation of her desired action. Section 3 introduces the dual element
of the agent’s utility function, which is used to formulate the dual problem, and then establishes
duality between the primal and dual problems under relaxed regularity conditions. Applying
the duality principles, Section 4 derives conditions on the dual convex functional under which an
optimal contract exists in a unique form or fails to exist. Section 5 concludes.

2. The Agency Problem

We consider the standard agency problem in which a risk-neutral principal (she) delegates a single
task to a risk-averse agent (he), taking advantage of the agent’s expertise. The principal offers the
agent a contract which specifies a compensation schedule on the basis of verifiable score s € S C



R, where the scalar s indicates the given performance measure.” Accepting the contract, the agent
supplies an input a € A = [0,4] for the delegated task at a personal cost of (), and this move
is unobserved by the principal.® Declining the contract, he obtains a reservation payoff of V. The
agent’s input a determines the distribution of his score, F(s|a) = Pr(S < s|a).* We make the
standard assumptions that the support of S is independent of 2 and F admits a density function f
with respect to Lebesgue measure.

After the contract is executed, the agent obtains a payoff of u(w) — ¢(a). The first term u :
[w,00) — R represents the agent’s utility from compensation, which is assumed increasing and
strictly concave. Our subsequent analysis of the model is comprehensive, so that we allow the
function u to be bounded or unbounded at the minimum wage w, and allow u to be increasing
with or without bound. The second term 1 indicates the monetary cost of supplying input a to
the agent, which is assumed nondecreasing. The agent’s payoff is additive separable, implying
that the agent’s preference over uncertainty is independent of his input. Given a contract w, the
agent’s expected payoff can be written as V(w, a) = E[u(w(S))|a] — ¢(a).

To induce input a from the agent at the least cost, the principal must offer a contract that solves
the following optimization problem:

min E[w(S)|a] (P)

w>w

subject to the participation and incentive constraints,

=
g

N
v

v (PC)
V(w,a) > V(w,d') Vad €A. (IC)

One important issue which has been extensively studied in the literature is how to sort out relevant
ones among the set of incentive-compatible (IC) constraints. In what follows, we assume that the
first-order approach (FOA) is valid, so that relevant is only the local downward IC constraint.’
Under this approach, the set of IC constraints can be replaced by the following relaxed condition
(Rogerson (1985)):

2 V(w,a) = Va(w,a) = Efu(w(S))L*(S)la] ~¢/(a) > 0, (L-1C)

where L?(s) = 2 log f(s|a) denotes the likelihood ratio at the desired action a. In case of a dis-
crete action space {ay,a,- - - ,ax}, the relevant local constraint for implementation of a; becomes

2We present the model with a unidimensional signal for simple exposition, but the results are readily extended to
multidimensional signals as long as the first-order approach is valid.

30ur results continue to hold even if the agent’s action space A is a discrete set.

4Throughou’c the paper a capital letter S is used for a random variable, and a small letter s is used for its realization.

SExisting literature has developed a various set of conditions on either the agent’s utility function u or the dis-
tribution F (or both), under which this local approach can be justified. One of the most common conditions is the
CDEFC (convexity of the distribution function) property in case of univariate performance measures, which requires
Fas(+]a) < 0. In case of multivariate measures, Conlon (2009) has shown that if F satisfies the monotone likelihood
ratio property (MLRP) and the concave increasing set probability (CISP), then the FOA is valid. For other conditions
justifying the FOA, refer to Jung and Kim (2015) and Kirkegaard (2017).



V(w,ax) > V(w,ar_1) under FOA. Put it in words, the approach postulates that at the optimal
contract, there is only a local downward deviation from the intended action, and therefore the
constraint (L-IC) precludes the agent’s all possible deviations.

In order to clarify the agency problems of interest, we define

QO = {(u, i, F) |u: [w,00) — R increasing and strictly concave,
¢ : A — R nondecreasing, FOA is valid under F }

Each element of the set () collects the key components relevant to the agent’s payoff, identifying
an agency problem together with the distribution of outcomes F. For each (u, 1, F), the main
problem for the principal is then to minimize the expected pay necessary for implementing the
desired action, given the PC and L-IC constraints. Hereafter, we call this constrained minimization
problem (P) the primal problem, and we say that a contract w(s) > w is feasible if it satisfies the two
constraints. Since the agent’s utility function is concave, it is immediate from Jensen’s inequality
that the set of feasible contracts is convex. Hence every primal problem specified by an element
of () can be put as a convex optimization problem.

If the primal problem admits a solution w*, we denote by C*(a) = E[w*(S)|a] the primal value.
The value C*(a) represents the minimal expected pay necessary for implementation of the desired
action a under moral hazard. For a benchmark, let Cf (a) denote the minimal cost under perfect
information. When the agent’s behavior is observable, the cost-minimizing contract features fixed
pay w’ irrespective of his performance score s. We assume that at least such a first-best contract
exists for every problem in (), and thus the participation constraint (PC) alone does not pose an
agency problem. On the other hand, under moral hazard, the principal inevitably has to offer a
contract contingent upon the uncertain outcomes for incentive provision. In exchange for shifting
payoff risks to the agent, the principal gives up a risk premium which gives rise to an agency cost
as much as C*(a) — CF(a) > 0.

3. Duality in Agency Models

In this section, we formulate the Lagrange dual of the agency problem (P) and establish their
equivalence, the so-called Lagrange duality.

3.1. Weak Duality

Given an agency problem (u, ¢, F) € (), define the primal value function as

€(a) = inf {E[w(S)|a] : w is a feasible contract} .

w>w

Notice that in contrast to C*(a), the value function €(a) is defined as the infimum of expected pay
and thus it is always well-defined irrespective of existence of an optimal contract. To be specific,



we have C*(a) = €(a) < co whenever an optimal contract exists, whereas we have €(a) = oo if
there exist no contracts feasible. In the latter case, we say that the primal problem is degenerate or
infeasible.

We next construct the associated Lagrangian £ with the primal problem and combine the terms
dependent on w, to write it as follows:

L(w;z) = Elw(S)|a]+z-(V—-V(w,a), —Va(w,a))
= E[w(S) — u(w(S)) (z1 +z2L(S)) | a] + z1(¢(a) + V) + zo¢'(a), (1)

where z = (z1,z) > 0 are the Lagrange multipliers for the constraints PC and L-IC, respectively.
With the Lagrangian, we define the counterpart of €(a) as
J(z) = inf £(w;z), (2)
w>w
which is referred to as the dual value function hereafter. Then it directly follows by definition that
J(z) < &(w;z) < E[w(X)la] for every feasible contract w and for all nonnegative multipliers z.
This leads us to the next inequality, the so-called weak duality:
max 3(z) < €(a). (wD)
To put it in words, the dual value function J(z) provides a lower bound on the primal value and
weak duality holds in general. In particular, the inequality (wD) is satisfied even when the dual

value function is increasing without bound, so that sup, ., J(z) = co. Then €(a) = oo is immediate
from weak duality, implying that the primal problem is infeasible.

3.2. The Dual Convex Functional

The dual value function J defined in (2) involves an optimization problem over a functional space,
determining a compensation scheme for all possible outcomes. This infinite-dimensional problem
is usually difficult to deal with, and moreover, the expectation in (1) is not even defined for a
certain class of contracts. In order to circumvent this difficulty, we adopt the standard method of
taking the pointwise infimum in (2) to characterize the function J. This process simplifies the prob-
lem into a uni-dimensional one of assigning a payment to each realized score s, or equivalently, to
each value of the informational variable q,(S) = z; + z,L%(S) given the multipliers.
The simplified problem can be put as a family of maximization problems with parameter g:

¢(q) = sup {u(w)q —w}. (T)

w>w
Consequently, the pointwise process gives rise to the value function ¢ for each value of g, and the
process can be viewed as a transformation T : u +— ¢ from the primitive u to a function ¢ of the
single variable g. With slight abuse of terminology we refer to ¢ as the dual convex functional, and



denote by w*(g) > w a solution to the maximization problem above.® The transform T is at the
heart of our subsequent analysis on existence of an optimal contract, as it turns out.

We next enumerate basic properties of the functional ¢. In light of definition, it comes as no
surprise that the properties rest on the agent’s utility function.

Lemma 1. The dual convex functional ¢ possesses the following properties:
(1) ¢(q) is finite-valued for g < 0 if u(w) > —oo.
(ii) ¢(q) is finite-valued on q > 0 if limyyte u'(w) = 0.
(iii) ¢ is convex in the region where it is finite.

PROOF OF LEMMA 1: See Appendix A.2. []

We next categorize the agent’s utility function into three types and for each type, we illustrate
the distinctive features of the dual convex functional via examples.

Example 1. Suppose that the agent’s utility function is given by u(w) = w* defined on [0, 00), where
i« € (0,1) is a constant. Then its dual convex functional ¢ takes a form of

0 forq <0
(+ =1) (k)= forgq > 0.

The utility function of the form w* on [0, %) is bounded below and continuously increasing with
no linear asymptotes. As a result, it follows from Lemma 1 that the dual convex function is finite
everywhere, hence globally convex. In particular, as ¢ is strictly convex in the region [0, o), the
optimal solution w*(q) characterizing ¢ is uniquely determined for each g > 0.

Example 2 (Bounded Utility /Payments).

(a) Let u(w) = 1—e " on [0,00), where x > 0 is a constant. Its dual convex functional ¢ takes a
value of zero for ¢ < k1t and g — k" }[1 + Inkq] for g > x~ L.

(b) Letu(w) = 2+/won [0,@). Then the functional ¢(q) takes a value of zero in (—o0,0), g% in [0, @'/ ],

and 2w"/?

g —win (w'/?,00).

The second example delineates a contracting environment where the agent’s utility is not much
responsive to a large payment or the payment itself is bounded due to limited liability (Jewitt
et al. (2008)). The utility functions in this environment are uniformly bounded, and as a result,
the dual convex function ¢ takes a finite value everywhere as in the previous example. However,
bounded utility gives rise to one notable difference. Since ¢’ (q) = u(w*(g)) holds by the envelope

®The dual transform T differs from the Legendre-Fenchel transform (or the convex conjugate), which takes a form of
u*(q) = sup,, {qgw — u(w)} in our framework. See Jewitt (2007) who applies this standard transform to develop a dual
approach to the agency problem in the same spirit as ours.



theorem, the functional ¢ has its derivative uniformly bounded. It turns out that whether ¢’ is
bounded is a decisive factor for existence of an optimal contract. To be specific, we demonstrate
in the next section that an optimal contract does not necessarily exist if there is a constant M such
that [¢'(g)| < M for every q.

In contrast with the examples above, the dual convex functional can take infinity as a value on
its domain. Lemma 1 tells us that this is the case if 1 is unbounded below or increasing along an
oblique asymptote.

Example 3 (Unbounded/Asymptotically Linear Utility).

(a) Let u(w) = —1 on [0,00). Then ¢(q) = —2,/7 for every q > 0, whereas ¢(q) = oo for every
g <o0.

(b) Let u(w) = 2y/won [0,1] and w + 1 on [1,00). Then ¢ takes a value of 0 in (—o0,0), g2 in [0,1],
and oo in (1, 00).

As is shown in this example, the dual convex functional takes co as a value on its domain if the
agent cannot fulfill his subsistence needs at the current minimum wage, or if the agent tends to
be neutral for a compensation risk when base pay is high enough.” In particular, if the likelihood
ratio L? is unbounded, the variable ¢ = z1 4+ z,L?(S) with z; > 0 would traverse the region where
¢ = oo with positive probability. It can be shown that in this case, an optimal contract does not
exist for the same reason as in Mirrlees (1979). Furthermore, even if the ratio is bounded, existence
may fail for a different reason as it has been observed by Moroni and Swinkels (2014). In the next
section we examine the existence problem by adopting an alternative approach, to develop further
insights into the previous results.

3.3. The Duality Theorem

Substituting the dual convex functional ¢ into the Lagrangian £, we obtain a closed form of the
dual value function:

3(z) = —E¢ (21 +2L(9)) |a] +z1(p(a) + V) +22¢'(a) = £(wy;2), 3)

where w; is the contract derived from the functional ¢, thereby satisfying w,(s) = w*(g.(s)) for
every realized score s. With the function J, we can state the Lagrange dual problem as:

max J(z). (D)
We denote by z* = (z], z5) a solution to the dual problem, if it exists. Since J(z) < €(a) follows by

weak duality, the dual value J(z*) serves as a lower bound for the primal value. In general, there
is a gap between these two values, which is referred to as the duality gap. In this subsection, we

’Simple algebra reveals that if the utility function has an oblique asymptote, i.e., limg_co ' (w) = % for some x > 0,
then ¢(g) = oo for every g > «.



present a pair of conditions under which the gap disappears; in other words, strong duality holds
within the set () of agency problems.

The most well-known condition for strong duality is presumably Slater’s condition, which re-
quires in our framework existence of a contract w(x) > w such that the two constraints both have
slack:

—V(w,a)+V < 0 and —V,(w,a) < 0. (4)

Put differently, Slater’s condition calls for existence of a strictly feasible contract. It is well-known
that so long as the primal problem is feasible, the condition (4) is sufficient for strong duality to
hold for a convex optimization problem (Theorem 1 in Chapter 8.6 of Luenberger (1969)). For
our purpose, however, we generalize the standard condition a bit further to establish the duality

principle:

Theorem 1 (Lagrange Duality in Agency Models). Suppose that an agency problem (u,,F) € Q
fulfills the next two conditions:

(i) €(a) < oo, and
(ii) for each z > 0, there exists a w, > w such thatz - (V — V(wy, a), —V,(wy,a)) < 0.

Then there exists a solution z* > 0 to the dual problem (D), and furthermore, strong duality holds:

C(a) = max J(z). (SD)

z>0

PROOF OF THEOREM 1: See Appendix A.1. [

Theorem 1 establishes strong duality in the agency model under the two conditions. Condition
(i) is a fairly mild condition requiring that the primal problem be feasible, whereas (ii) is a rather
restrictive but essential condition for duality which deserves comment. In line with other non-
degeneracy conditions, the condition (ii) ensures existence of a nontrivial separating hyperplane.
However, the condition generalizes Slater’s condition (4) in that it admits a possibility that one
of the two given constraints is violated. For an illustration, suppose that there exists a contract
wy for which only the incentive constraint is met, i.e., V,(w1,a) > 0 but V(wy,a) < V, so that
existence of w; does not directly imply (4). Nonetheless, condition (ii) does hold, provided that
the incentive constraint has slack large enough to nullify the participation constraint. In the next
section, we make use of this relaxed condition to establish strong duality for the agency problem,
even when the dual value function J - the objective of the dual problem - is not well-behaved,
thereby justifying our approach to the dual problem in a large class of the agency problems.

Theorem 1 tells us that the two different problems yield the same value, and thus for each agency
problem in ), we can identify the exact agency cost from the dual problem (D). Compared to the
primal problem (P), the dual features a rather simple structure with a pair of real-valued choice
variables z = (z1, z2), which indicate in the agency problem base pay and pay-performance sensi-

10



tivity, respectively. Furthermore, strong duality serves as a toolkit for our analysis of existence of
an optimal contract in the next section, as is shown in the next result:

Corollary 2. Suppose that strong duality (SD) holds for an agency problem (u,y,F) € Q, and let w*
denote the contract derived from the dual problem:

max J(z) = J(z") = L£(w*;z").

If the contract w* is feasible, then w* constitutes an optimal contract.

PROOF OF COROLLARY 2: Denote by z* a solution to the dual problem. Observe that under the
given conditions, we have

E[w*(S)la] < €(a) = 3(z") = £(w2"), )

where the inequality is due to the assumption that w* is a feasible contract. In addition, it follows
from z* > 0 that

L(w*2") = Elw'(S)]a] +2"- (V= V(w",a), —=Va(w",a)) < E[w"(S)[a]. (6)
Then putting (5) and (6) together results in €(a) = E[w*(S)|a]. O

Before turning to the next section, it is worthwhile to see that strong duality holds at least
under perfect information. Absent the incentive constraint, the first-best dual problem can be
formulated with a single multiplier z as max,>o 3% (z), where 3% (z) = —¢(z) + z[¢/(a) + V]. Hence
3F(z) = J(z,0) is immediate from (3). Since we assume existence of a first-best contract for every
problem in Q), it follows by strong duality that Cf (a) = J(zF,0) for some zF > 0.

4. Existence of an Optimal Contract

In this section, we apply the duality principles established in Section 3 and derive novel conditions
for existence of an optimal contract in the standard agency model. The dual problem provides a
different angle for analysis, and moreover, its simple structure allows us to look into the existence
issue in a systematic manner. To begin with, in light of the examples in Section 3.2, we subdivide
our analysis into two cases depending on whether the dual convex functional ¢ is finite-valued.

4.1. Finite-valued Dual Convex Functional

We first deal with the agency model whose primitives give rise to a finite-valued dual convex
functional ¢ on its domain. Recall that this is the case if and only if the agent’s utility at the
minimum wage w is bounded below and his marginal utility from compensation w converges to
zero as w grows large. We derive sufficient conditions for the existence in terms of the functional
¢ using the structure of the dual problem.

11



For this purpose, by an appropriate translation, we assume without loss of generality that both
w and u(w) are zero. This normalization simplifies the functional ¢, which takes a value of zero
on (—o0,0] and is increasing and convex on [0,00). As a result, it follows from Lemma 1 that
¢ is globally convex on its domain, and therefore, the dual value function J put in (3) is twice
differentiable almost everywhere.

Taking the partial derivative of J with respect to z, we obtain

J2(z) = —E[¢'(q2(S))L(S)]a] +¢'(a) = —Vi(wg,a), )

where ¢,(S) = z1 + z,L%(S) and the last expression is due to the envelope theorem. Hence the
partial derivative J, represents the (negative) marginal net gain from input to the agent given the
contract w,, and thus J, < 0 indicates that w, fulfills the incentive constraint (L-IC).

To better understand how the function J responds to a change in z;, observe that when z, = 0,
the informational variable g, boils down to a constant z;, so that the corresponding contract w,
represents fixed pay. We know that such a contract violates the incentive constraint. As a matter
of fact, substituting z, = 0 into (7) yields J2(z1,0) = ¢'(a) > 0 for all z;, because the likelihood
ratio L?(S) has mean zero. This reveals that z; = 0 can never be a solution to the dual problem. In
addition, since ¢ is globally convex and strictly convex on a set of positive measure, we have the
second partial derivative negative:

Ja(z) = —E [¢(5:(5)) (L'(5))* |a] < 0,

Consequently, given the contract w,, the agent’s marginal gain from input is increasing in z;. The
idea behind this negative sign is simple. An increase of z, in the contract w, is tantamount to
the compensation scheme being more sensitive to performance scores, strengthening the agent’s
incentives. Since J, turns out to be monotone decreasing in z; and J»(z1,0) > 0, we can deduce
that for each z1, there exists a unique z; > 0 satisfying J»(z1,z;) = 0, provided that lim,,1, J2 < 0.

Similarly, we compute the first- and second-order partial derivatives with respect to z; to obtain

3= —V(wga)+V  and  Ju = —E[¢"(q(5))]a] < 0.

The partial derivative J; yields the agent’s (negative) net expected payoff from the contractual
relationship enforced by w,. The negative sign of J1; is again due to convexity of ¢, implying that
the payoff is increasing in the level of pay.

Our discussion so far leads us to the next lemma:

Lemma 2. Suppose that an agency problem (u,,F) € Q) gives rise to a finite-valued dual convex func-
tional ¢. Then the dual value function J is strictly concave, so that a solution to the dual problem max J(z),
if it exists, is uniquely determined at the stationary point of J.
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PROOF OF LEMMA 2: By the Cauchy-Schwarz inequality, we have

(312)° = (E [¢"(3.(5)17(5)1a))* < E [¢"(0u(5))la] E [¢" (.(5)) (1°(5))* |a] = I3z

The strict inequality above and J»; < 0 reveal that the Hessian matrix of J is negative definite. As
a result, J has at most one stationary point where J attains a global maximum. []

With the properties of J established, we are now ready to state our first existence result:

Proposition 3. Suppose that the dual of an agency problem (u,y,F) € Q results in a finite-valued
dual convex functional ¢ with ¢’ weakly monotone (i.e., either nondecreasing or nonincreasing). Then
an optimal contract exists in a unique form if

li{n J2(z1,22) < 0 foreveryz; > 0. (8)
Zp oo
PROOF OF PROPOSITION 3: See Appendix A.3. [

The proof of Proposition 3 is composed of two parts. We first show that a weakly monotone
¢’ and the condition (8) are sufficient for the dual value function J to have a stationary point z*.
Hence it follows by Lemma 2 that the dual problem has a unique solution at z*. Based on this
property of J, we then employ strong duality to establish existence of an optimal contract. Since
the dual approach maps a pair of the Lagrange multipliers onto a contract through the transform
T, we obtain the corresponding contract w,+ to the unique stationary point. On top of that, at
this contract the two constraints are binding because VJ(z*) = 0. Optimality of w,- is then an
immediate consequence of Corollary 2.

Proposition 3 presents the two conditions for existence in () where the primitives yield a finite-
valued dual convex functional ¢. Compared to the condition that ¢ be weakly monotone, rather
strong is the second condition (8) which requires that the principal is able to offer adequate incen-
tives through a contract of form w, by adjusting pay-performance sensitivity z,.> Moreover, the
condition is difficult to verify in that the limiting behavior of J naturally depends on the distribu-
tion F as well as the agent’s utility function u. A follow-up question is therefore for which u we
have J; falling below zero. Our next result shows that (8) holds if ¢ has an unbounded derivative;
namely, if the agent’s utility function is unbounded above.

Corollary 4. Suppose that the dual of an agency problem (u,, F) € Q gives rise to a finite-valued dual
convex functional ¢ satisfying two properties: (i) limgye, ¢'(q) = oo and (ii) ¢ is weakly monotone. Then
an optimal contract exists in a unique form.

PROOF OF COROLLARY 4: By Proposition 3, it suffices to show that lim,, e J2(z) < 0.
To this end, observe that for a given z; > 0, as zo grows large, the sign of the variable
4z(s) = z1 + z2L(s) is governed by the sign of the likelihood ratio L?(s). To be precise, we

8Refer to Example 4 and Proposition 6 for a discussion of the condition that ¢ be weakly monotone.
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have |Pr (q,(S) > 0|a) — Pr (L?(S) > 0]a) | — 0. Furthermore, ¢'(z1 + z,L?(S)) is increasing in z,
whenever L? > 0, so it follows by the dominated convergence theorem that if ¢’ is unbounded
above, the expectation in (7) grows arbitrarily large as z; — co. Therefore, J, falls below zero. [

Corollary 4 provides us with a pair of novel and simple conditions for existence and uniqueness
in terms of the dual element ¢. It is worthwhile to see that Corollary 4 is independent of the
distribution F and, in particular, the result dispenses with other conditions necessary for non-
degeneracy of the primal problem. The role of the condition ¢’ = u — oo is straightforward. If
u is unbounded above, then the incentive-compatibility constraint can be fulfilled by increasing
zp within a class of contracts w,, put it in words, by offering a contract more responsive to the
outcome. In fact, the unbounded ¢’ is essential for the existence. In case of bounded derivatives as
in Example 2, it is possible that any contracts of the form w, do not provide a proper incentive for
the intended action; in other words, J, remains positive for every z, and thus existence inevitably
fails.

Corollary 5. Suppose that an agency problem (u,,F) € Q results in the finite-valued dual convex
functional ¢ with |¢'| < M for some constant M. Then an optimal contract does not exist if

E[Le(s7la) < 0. ©)

PROOF OF COROLLARY 5: Note that for every z, > 0, the expectation in the expression (7) of J» is
bounded above by

E ¢/ (q2(S)L(S)a] < \/E[9(g2(5)2/al\/E[Le(SPla] < M\/E[L7(5)?]a),

where the first inequality is due to the Cauchy-Schwarz inequality. Consequently, if (9) holds, we

have J, > 0 for every z. This implies that the dual value function J is continuously increasing
in z, without upper bounds, and thus €(a) = oo follows by weak duality. Therefore, the primal
problem is infeasible and an optimal contract does not exist. []

Corollary 5 tells us that if ¢ has a bounded derivative, existence hinges upon how much diffuse
the likelihood ratio L is. To gain insights, recall that the random variable L?(S) contains infor-
mation about the agent’s hidden behavior. When the variable has small variance, it is not much
sensitive to the agent’s possible (local) deviations; put differently, the given performance metric S
contains little information about his choice of input. Consequently, no contracts of the form w,(s)
does meet the incentive constraint, and the primal problem is therefore infeasible. For a concrete
example, consider the standard agency problem in which the agent privately controls the mean
of the normal distribution S ~ N(u + a,0?) at a cost of ¢(a). The likelihood ratio of this signal
follows a normal distribution with mean zero and variance o2, regardless of the intended action
a. Therefore, when the agent’s utility function is given by u(w) = 1 — e~%, there exist no optimal
contracts implementing a if ¢/ (a) > o~ 1.
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(@) u(w) = infy=o{g~(¢(q) +w)} (b) ¢(q) = sup,»o{u(w)g —w}

Figure 2: Duality between agent’s utility and dual convex functions

So far we remain silent about the assumption that ¢” is weakly monotone, notwithstanding its
importance for our existence results. Together with (8), monotone ¢” is essential to rule out the
possibility that the strictly concave function J has no stationary points. Compared to the other
conditions, this assumption is fairly innocuous and is indeed satisfied for typical utility functions
including Examples 1 and 2. However, as is demonstrated in the next example, we may have

non-monotone ¢” for some unusual functions:

Example 4. Consider the following utility function defined as

w -2/3

u(w) = inf {2\/5—1- 1qz + w} = / [—1 + V1 —1—25} ds for w € [0,00),
g>0 4 q 0

which is continuously increasing, limqy,—« 1/ (w) = 0, strictly concave, and bounded below as is displayed

in Figure 2-(a). The associated dual convex functional takes a form of

202+ 14° for 20,

Pa) = 0 for g <O.

In fact, the function u is obtained by taking the inverse transform of T on the functional ¢, u(w) =
inf,~o{q 1 (¢(q) + w)}, which follows from the definition of T, 4 la Fenchel’s inequality.” Although
globally convex, the functional ¢ has a non-monotone second-order derivative.

When monotonicity of ¢’ fails as in Example 4, neither Proposition 3 nor Corollary 4 are unfortu-
nately applicable. Our last result in this subsection supplements the preceding results, establishing
existence of an optimal contract even when ¢ behaves non-monotonically.

Proposition 6. Suppose that the dual of an agency problem (u, ¢, F) € Q) gives rise to a finite-valued dual
convex functional ¢ which is strongly convex on [0, 00): there exists a constant m > 0 such that ¢"' (q) > m

9In the companion paper Chi and Choi (2021), we go into detail about the inverse transform and establish duality
between u and ¢. The duality implies that an agency problem can be equivalently stated in terms of u or ¢.
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for every q € [0, 00). Then an optimal contract exists in a unique form.

PROOF OF PROPOSITION 6: See Appendix A.4. []

The basic idea behind Proposition 6 stems from the concept of strong convexity. It is well-
known that if the objective function defined on a closed set is strongly convex (strongly concave),
its minimization (maximization, respectively) problem has a unique solution at the stationary
point. In the proof, we show that if ¢ is strongly convex, then the dual value function J becomes
strongly concave, so that the dual problem has a solution at the stationary point. Therefore, strong
convexity of ¢ plays the same role as the two assumptions - weakly monotone ¢” and J, < 0 -
necessary for existence in Proposition 3. Since the dual convex functional ¢ in Example 4 is indeed

strongly convex on [0, o), existence follows by Proposition 6.

4.2. Extended Real-valued Dual Convex Functional

We next examine the issue of existence when the dual convex functional ¢ diverges on its domain.
Recall that ¢ takes co as a value when u is unbounded below or u is increasing along an oblique
asymptote as in Example 3. In this case, we encounter the problem of how to evaluate the expec-
tation of ¢ in the expression (3) of J, and as a result, the objective of the dual problem is in general
not well-defined. In order to circumvent this technical issue, we define the truncated dual convex

functional as

oM(q) M for q at which ¢(q) = o0
q =
¢(q) otherwise,

and define the associated dual value function JM as
~M _ M a /
M(z) = —E [¢" (21 +2L°(S)) |a] +21(9(a) + V) + 229/ (a).

Then it follows by the Lebesgue dominated convergence theorem that limys . 3M(z) = J(2).
We split analysis into two cases depending on whether the likelihood ratio L? is bounded or not.
When unbounded, our dual approach yields the next well-known result:

Proposition 7 (Unbounded Likelihood Ratios, Mirrlees (1979) and Holmstrom (1977)). Suppose
that an agency problem (u, , F) € Q) gives rise to an extended real-valued dual convex functional ¢. If the
likelihood ratio L* of F is unbounded, there exists no optimal contract implementing the desired action a.

PROOF OF PROPOSITION 7: See Appendix A.5. []
Proposition 7 formalizes the original idea of nonexistence developed by Mirrlees (1979) in terms

of the dual functional. When the agent’s utility function and the likelihood ratio are unbounded
below, Mirrlees has shown that there exists a sequence of simple contracts enforcing severe penal-

16



ties for extremely poor performance, approximating the first-best outcome arbitrarily closely.'
Our dual approach embodies this classic result in the dual space. For an illustration, we first
demonstrate in the proof that given the conditions, the dual problem maxJ(z) has a unique so-
lution at the corner where z; = 0. However, z = 0 implies that the incentive constraint is no
longer concern as in the environment with perfect information, and as a result, the problem yields
exactly the first-best value. It then follows by strong duality that if the primal problem is feasible
so that €(a) < oo, the infimum value €(a) also takes the same value. In addition, if some contract
achieves this value, it should take a form of fixed pay, namely w, with z, = 0, thereby violating
the incentive constraint. To recapitulate, this falls into the case where the infimum value &(a) is
not an element of the set of feasible values. Therefore, we can deduce that there exists a sequence
of feasible contracts {wy, } such that E[w,|a] — €(a) but its limit point is infeasible.

A simple structure of the dual problem also carries the exact conditions on the primitives under
which the dual value function J achieves the optimal value at z; = 0 and hence a first-best ap-
proximation is possible. Notice that strong duality is indispensable for Proposition 7. In order to
establish strong duality, we employ the weak condition (ii) in Theorem 1 that deserves comment.
To highlight its role, suppose that the agent has a utility function unbounded below but bounded
above due to limited liability for the principal. In this case, it is unclear whether the given agency
problem satisfies other existing conditions for non-degeneracy, which require that both constraints
should have slack.!! In contrast, the condition (ii) only requires that either constraint should have
enough slack to offset the other. Compared to Slater’s condition, it can be easily verified even
when the dual value function J is not well-behaved as in Proposition 7 or incentives are bounded.

Lastly we turn to the remaining case, where the dual convex functional ¢ takes co on its domain
and the underlying distribution entails a bounded likelihood ratio. We know that ¢ is an extended
real-valued function, when u is either unbounded below or increasing with an oblique asymptote.
In contrast with Proposition 7, however, we obtain qualitatively different existence results in these
two cases, so we treat them separately.

In the agency model, the bounded ratio indicates that the given performance measure X conveys
limited information about the agent’s behavior. As a result, no longer can the principal incentivize
the agent with severe penalties or big bonuses for an unexpected outcome. In our dual approach,
the bounded ratio makes a noteworthy difference from Proposition 7. Despite the dual convex
functional ¢ taking the value oo, the dual value function J can take a finite value even at a positive
zo, provided that the other multiplier z; is adjusted accordingly. To be precise, for bounded L?,
we can keep the random variable z; + z;L?(S) from penetrating the region where ¢ = oo. This
suggests that the dual problem has an interior solution with z; > 0, precluding the first-best
approximation. Nonetheless, as is shown by Moroni and Swinkels (2014), an optimal contract

19Tn the same vein, Holmstrom (1977) has shown that if the agent’s utility has an oblique asymptote, then the first-best
outcome can be approximated by a sequence of contracts paying high bonus for extremely good performance.

A standard way to examine this constraint qualification condition in the agency model is to construct a simple
contract consisting of a fixed wage and a bonus for incentives, and then check whether the scheme satisfies both
constraints. However, whenever utility or payment is bounded as in Example 3, the standard method is not well-suited
because such a simple contract may violate either constraint.
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fails to exist for a different reason when the agent has a utility function unbounded below.

Proposition 8 (Bounded Likelihood Ratios, (Moroni and Swinkels, 2014)). Consider an agency prob-
lem (u,y,F) € Q, in which the agent’s utility function u is unbounded below and the likelihood ratio of
F is bounded: L* € [L, L] almost everywhere for intended action a. Then there exists no optimal contract
implementing the action a, provided that

inf {32(Z) 121> —2oL, zp > 0} > 0. (10)

Proposition 8 presents a sufficient condition for nonexistence in terms of the dual value func-
tion J. To illustrate the key insight into the condition (10), letting a be a target action and L =
infses L(s) € (—o0,0), consider the dual problem maxJ(z). As we have seen in the proof of
Proposition 7, the objective function J tends to —oo whenever the variable z; + z;L?(S) falls be-
low zero with positive probability. This suggests that in order to maximize J given z, > 0, the
multiplier z; has to be set at least larger than —z,L. Consequently, whenever the utility function
is unbounded below, the bounded ratio imposes a restriction on z; in the dual problem. With this
feature in hand, suppose (10) holds, so that the function J is continuously increasing in z;. Then
we have J arbitrarily large as z, grows, and thus weak duality (wD) leads us to €(a) = oo, that is,
the primal problem is infeasible.

Given the conditions on u and L* in Proposition 8, Moroni and Swinkels (2014) have presented
a concrete example for nonexistence in which the agent has a logarithmic utility function, u(w) =
Inw defined on (0, o). Recall that its dual convex functional takes a form of

g(lng—1) for g>0,
¢q) =
00 for g <0.

Since the functional ¢ has a second-order derivative decreasing in g for g > 0, it follows from the
Banks (1963) inequality (Refer to Appendix B) that

Ji2 = —E[¢" (z1 +22L*(S)) L(S)|a] > 0.

To put it in words, an increase in the level of pay z; brings about a perverse effect on the agent’s
marginal incentive J,. Consequently, for each z; > 0, the infimum in (10) is attained at z; = —z>L.
To see whether the infimum of J is strictly larger than zero, we take the derivative of Jo(—z2L, z2)
with respect to z», to obtain

d d

A (—zL 7)) = —dZZ/log(—ZQL+ZZL“(S))fu(s|a)ds _ —le/fa(s|a)ds — 0. @1

This implies that the strongest marginal incentive is invariant with respect to z,, and therefore
infJ, > 0 holds if the assigned task incurs sufficiently high marginal costs to the agent.
To develop insights into this negative result, remember that an unbounded-below utility func-
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tion imposes a lower bound on the multiplier z;, which is needed to protect the agent against
undue penalties. The key to nonexistence in Proposition 8 lies in the fact that the lower bound
—2zpL is directly proportionate to zp, which controls the pay-performance sensitivity in the con-
tract w,. As a result, an increase in z; induces a countervailing effect on incentive provision. A
contract with high sensitivity does not just strengthen incentive to work but tightens the lower
bound on base pay z;. Hence the principal cannot help but raise the base pay, which undermines
the incentives as is indicated above by Ji» > 0. As a matter of fact, (11) reveals that in case of
log utility, these two opposite effects are exactly offset, and therefore the principal can no longer
provide adequate incentives via a dual contract w,.

Our next result presents a rather simple condition for bounded incentives (10) in terms of the

dual convex function alone:

Corollary 9. Consider an agency problem (u,,F) € Q, in which the agent’s utility function u is un-
bounded below and the likelihood ratio L of F is bounded. If the associated dual convex function satisfies
limg1o ¢'(q) = « for some constant x, there exists no optimal contract implementing the desired action.

PROOF OF COROLLARY 9: For the proof, we claim that the dual problem achieves an infinite value
under the given conditions. To this end, we examine the limiting behavior of J, at z’ = (—z,L, z2)
as zp — 00!

limz, 100 J2(2') = —IE [lim;e ¢ (22(L*(S) — L)) L*(S)]a] + ¢/ (a)
= —E[xL*(S)|a] +¢'(a) > 0,

where the first equality is due to the dominated convergence theorem and the second is due to
the fact that ¢/ — « almost surely. The obtained inequality J, > 0, due to E[L?(S)|a] = 0, implies
that moving in the direction of (—L, 1) continuously, the dual value function J tends to co. This is
sufficient for J to grow arbitrarily large, so that €(a) = co follows by weak duality. [J

For an application, suppose that the agent’s utility function exhibits constant relative risk aver-
sion (CRRA), u(w) = ﬁwlﬂ on (0,00), where ¢ > 1 represents the relative coefficient. Its dual
convex function ¢ takes a form of

B VA S >0
| or q>0,
plq) = ¢
S for g <0,

so that limg., ¢'(q) = 0. Hence existence fails by Corollary 9. Notice that in contrast to the
log-utility case, the nonexistence result for CRRA is independent of other elements of the agency
model, such as the distribution F of outcomes and the marginal cost ¢ (a) from the assigned task.

From the last two propositions, we can deduce that the agent’s bounded-below utility is vital
for existence of an optimal contract. Whenever utility is unbounded below, existence is likely
to fail irrespective of whether the likelihood ratio is unbounded, i.e., how informative the avail-
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Figure 3: Utility Function with an Oblique Asymptote

able performance measure is. However, it is worthwhile to note that the underlying reason for
nonexistence is different in nature, and our dual approach helps clarify the distinction. No feasi-
ble contracts can achieve the first-best value in the case of unbounded likelihood ratios, whereas
no cost-minimizing contracts can induce the desired action from the agent in the case of bounded
ratios.

Our final result of this section concerns the case where the agent’s utility function is continu-
ously increasing along an oblique asymptote, lim;_,o #'(w) = 1/x. In sharp contrast to Proposi-
tion 7 and 8, we can show that for this type of function u, the bounded likelihood ratio leads to
existence under a certain condition. A key to this positive result lies in the fact that that the dual
convex functional of # now imposes an upper bound on the multiplier z;. Therefore, when provid-
ing an incentive through the contract w,, no longer does the principal have to increase the level of
pay zi in parallel with z, thereby nullifying the countervailing effect on the marginal incentive.

Proposition 10. Consider an agency problem (u,,F) € Q, in which the agent’s utility function u is
bounded below and increasing along an oblique asymptote, limy,_,o u'(w) = 1/« for some constant k > 0,
and the likelihood ratio L” of F is bounded. Then an optimal contract exists, provided that ¢" is weakly
monotone and

K
/ ¢’ (q)dg = oo forsomed < «. (12)
d
PROOF OF PROPOSITION 10: See Appendix A.6. [

Example 5. Suppose the agent’s utility function gives rise to a dual convex functional taking the form of

0 for g <0
lnﬁ for 0 <g <x,

¢(q) =

and ¢(q) = oo for q > «, as is depicted in Figure 3-(b) for k = 3. It can be shown that the associated
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function u is derived by the inverse transform of T introduced in Example 4 and takes a form of

u(w) = 1 [lnx £ *+w],

where q* is implicitly defined by

w —In—1 - 1
K—q* K—q*

As is displayed in Figure 3-(a), the derived function u is bounded below, strictly concave, and increasing
along the obliqgue asymptote 1/x. Nonetheless, as the given functional ¢ meets the two conditions of

Proposition 10, an optimal contract exists so long as the likelihood ratio of F is bounded.

5. Conclusion

In this paper, we developed a dual approach to the agency problems under the assumption that
the agent’s incentive constraints can be replaced with a single local constraint, i.e., the first-order
approach is valid. We demonstrated that by formulating its dual problem, the principal’s cost-
minimization problem for implementation of an action from the agent can be analyzed in a sys-
tematic manner. In particular, the dual formulation separates the problem of finding an optimal
contract from the problem of identifying the Lagrange multipliers, thereby investigating the ex-
istence issue in a compact way and offering illuminating insights into the previous nonexistence
examples. Furthermore, as we show in the companion paper (Chi and Choi (2021)), the approach
enables us to characterize a more efficient performance measure in the principal-agent problem.
We hope that the methods developed in this paper can serve as a useful tool to study more en-
riched agency model with other constraints on feasible contracts such as limited liability or com-

mitment, which we leave for future work.
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A. Omitted Proofs

A.1. Proof of Theorem 1

We follow Luenberger (1969) to establish strong duality with the relaxed condition (ii) for non-
degeneracy. To start, let z = (z1,2z2) € R? and define the following two subsets of > as

[x
|

b= {2

2= {(r,z):r

v

Elw(S)|a], z1 >V — V(w,a), z2 > —V,(w,a) for some w > w}
¢(a), z < 0}.

[x]
|

IN

Observe that E! and E? both are a convex set. In addition, it follows by definition of ¢(a) that
E; contains no interior points of &2, whereas Z? has an interior point of Z! if ¢(a) < co. Then by
the separating hyperplane theorem, there exists a nonzero vector (r*,z*) € R> separating the two
convex sets, that is,

(V*,Z*) ’ <rllzl) > (T*,Z*> ’ (72/ 22) (A.1)

forall (r!,z!) € E! and (1?,2%) € E2.

It is immediate from the definition of the set Z2 that (r*,z*) > 0, for otherwise the inner product
on the right-hand side of (A.1) would range up to positive infinity so the inequality does not
always hold. Furthermore, since the point (¢(a),0) is an element of Z2, we have

rri 4 (z5,2') > r*e(a) Y (rl,z') e EL (A.2)

We next prove r* > 0. To this end, suppose to the contrary that r* = 0. Then z* # 0, and
substituting z = (V. — V(w,a), —V,(w, a)) into (A.2) gives us

21(V—-V(w,a)) — z3V,(w,a) > 0 forallw > w.

However, the obtained inequality then fails to meet condition (ii) of the theorem, since it re-
quires that the inequality should be reversed for at least one contract w. Consequently, the non-
degeneracy condition (ii) leads us to 7* > 0, namely, a non-vertical hyperplane separating the two
convex sets ! and Z2.

To complete the proof, we normalize and substitute 7* = 1 into (A.2). This gives us

inf  {r+z"-z} > &(a).

(r,z) e &

However, by definition of the set =l we must have
inf {r+2z"-z} < inf{E[w|a]+z](V—-V(w,a))—2zVo(w,a)} = inf &(w;z")

(r,z) e 5 w>w w2>w

< inf{E[w|a] : w > w satisfies (PC) and (L-IC)} = ¢&(a).
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Therefore, the inequalities above must hold with equality, and by definition of the dual value
function J, we obtain inf,, £(w;z*) = J(z*) = €(a). Therefore, the desired result max,>o J(z) =
¢(a) follows by weak duality (wD). [J

A.2. Proof of Lemmal

For (i), observe that u(w)q — w is monotone decreasing in w for every ¢ < 0. Hence the dual
convex function is given by ¢(q) = u(w)q — w on the interval (—oo,0], which is finite-valued if
limy, |, u(w) > —oo. Its contrapositive tells us that if the agent’s utility function is unbounded
below, then the corresponding dual convex function takes the value co, suggesting that ¢ can be
an extended real-valued function.

For (ii), define § = inf{g > 0: 3 w* € [w, o) at which u'(w) = 1/4}. Then for every g > g, the
given condition u'(w) — 0 ensures existence of a unique w* at which u/(w*) = 1/4. Hence ¢ is
finite over the interval [, c0). To complete the proof, we divide analysis into two cases according
to whether u is bounded at w. If u is unbounded below, marginal utility from wealth u/(w) must
grow large as w | w. This implies § = 0, so that the function ¢(q) takes a finite value for every
g > 0. On the other hand, if u is bounded below, g can be strictly positive. Even if this is the
case, for every g € [0,9), u(w)g — w is then decreasing in w and thus ¢(q) = u(w)g — w is finite.
Therefore, the function ¢ is finite on (0, o) in either case.

For (iii), note that for every a € (0,1) and g1 # 4,

¢laqr + (1 —a)g2) = sup{a(u(w)q —w) + (1 —a)(u(w)gz —w)}

w>w

< asup{u(w)gy —w} + (1- ) sup{u(w)q, — w}

w>w

= ap(q1) + (1—a)p(q2).

Furthermore, it is a routine task to check that the weak inequality above holds strictly, provided
that the solution w*(q) € argmax_.  u(w)q — w is an one-to-one mapping: w*(q1) # w*(qz2) for

every g1 # g2. U

w>w

A.3. Proof of Proposition 3

We organize the proof in a succession of steps. Suppose that condition (8) holds, so that for every
z1, J2 < 0 as zp grows large. Since the partial derivative J, is monotone decreasing in z;, and
since J» > 0 at zp = 0, the condition ensures existence of a unique z(z1) > 0 for each z; such that

J2(z1,22(z1)) = 0.
® STEP 1: For every zo > 0, there exists a unique z1(z2) > 0 at which J1(z1(22),z2) = 0 holds.

To prove this statement, recall that we assume existence of the first-best contract for every
problem within (). In terms of the dual, there exists a zF > 0 at which the associated
dual value function 37 (z) = —¢(z) + z[¢(a) + V] attains a global maximum. Since 3 (z) is
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F

globally concave, z! is uniquely determined by the first-order condition: ¢'(zF) = ¢(a) + V.

This allows us to rewrite the partial derivative J;(z1,22) as
Ji(2) = —E[¢' (21 +2L°(S)) — ¢'(zF)]al.

Observe that for every z; > 0, z1 + z,L%(S) > zI almost surely as z; grows large. Conse-
quently, lim;, 1o, J1(2) < 0 because ¢’ is an increasing function. Therefore, the desired result

follows from the fact that Jj; is monotone decreasing in z;.

STEP 2: If ¢"' is weakly monotone, the implicit functions z1(z2) and zy(z1) both are weakly monotone.

For the second step, we shall prove the fact that a nondecreasing ¢” results in z»(z;) nonin-
creasing. The proof below can be easily generlized to show that the statement is indeed true.
To this end, fix a z; > 0 and consider the following optimization problem: max,> J(z1, 22).
As is shown in the main body, the objective function is strictly concave in the variable z;
given z1, the first-order condition J, = 0 characterizes the unique solution in full. This
also reveals that the implicitly-defined function z;(z1) can be alternatively put as a unique
solution to the problem. On the other hand, if ¢” is nondecreasing, we have

Jiz = —E[¢p"(z1 +22L"(S))L*(S)|a] < 0,

where the inequality is due to Banks (1963) (Refer to Appendix B). However, as J1» < 0
implies that the function J(z1,z2) exhibits decreasing differences in (z;z;), the solution

z2(z1) = argmax,, -, J(z1, z2) is nonincreasing.

STEP 3: The dual problem has a unique solution.

Define a mapping ¢ : [0,00)? — [0,00)? as 0(z) = (z1(22),22(z1)). Since this mapping is
(weakly) monotone as we verified above, it follows by Tarski’s fixed point theorem that o
has a fixed point z*. Since the fixed point of ¢ constitutes a stationary point of the dual
value function J, and since the function J is strictly concave, the dual problem has a unique

solution at z*.

STEP 4: An optimal contract exists in a unique form.

To establish existence, we first prove that strong duality holds under the given conditions.
For z7 > 0, our discussion in STEP 3 tells us that at the unique solution z* to the dual
problem, we have VJ = 0. Since both J1; and J2; take a negative value on the domain, there
exists a z' in the neighborhood of z* at which VJ(zg) < 0. However, VJ(zy) < 0 implies
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that both PC and L-IC constraints are slack for contract wy = wy,:
V(wg,a) —V > 0 and V,(wp,a) > 0,

and thus Slater’s condition is satisfied. To see €(a) < oo, observe that the two constraints are
binding at the contract w* = w,-, since VJ(z*) = 0. In other words, the contract w* derived
from the dual approach is feasible by construction, and hence we have €(a) < E[w,(S)|a] <
co. Therefore, it follows by Theorem 1 that strong duality holds, and Corollary 2 guarantees
existence of an optimal contract.

Uniqueness of w* is also immediate from Corollary 2. For an illustration, suppose to the
contrary that there exists another optimal contract @ different from w* on a set of positive
measure. We then must have J(z*) = £(®;z*). However, the dual convex functional ¢ is

characterized by the unique w* for each point g = zj + z;L%(s), a contradiction. [J

A.4. Proof of Proposition 6

We below show that if the dual convex functional ¢ is finite-valued on the domain and strongly
convex on [0,0), the dual value function J is strongly concave. That is, there exists a constant
m > 0 such that

Ju +m J12

N N is negative semidefinite. (A.3)
J12 Jo +m

Suppose that ¢ > m on [0, c0) for some constant m > 0. Then for every z > 0, we have

Jll(z) +m = —E [4)”((]1(5)) |ﬂ] +m < 0,
In(z) +mo? = —E [¢"(3:(9)) (L'(9))" |a] +-mo? < 0,
where 02 indicates variance of the likelihood ratio.

We divide our analysis into two cases depending on whether ¢ > 1. Suppose ¢? > 1, so that
Joo +m < Joo + mo? < 0. In this case, the cross-partial derivative of J is bounded above by

()" = (B [(¢"(q:(S)) — m)L*(S)[a])? (A4)
< E[(¢"(q2(S)) —m)|a] E [(¢”(qz(5)) —m) (L“(S)) Ia}

(311 +m) (Jaz + ma?)

< (F1u1+m)Jn +m),

where the first equality results from E [L?(X)|a] = 0 and the first inequality is due to the Cauchy-
Schwarz inequality. Consequently, the matrix in (A.3) is negative semidefinite.
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In case of 02 < 1, we let U= ma? > 0 so that

Ju(z) + % < 0 and Jn(z)+u < 0.
Consequently, J11(z) + ¢ < J11 + po—2 < 0. With this in hand, substituting o2 for m in (A.4)
yields

(312)2 < (Fut+uer?)@un+u) < @u+u) @2+ u).

This proves that the matrix in (A.3) with m = u is negative semidefinite for all 02, and hence the
objective function J of the dual problem is strongly concave. Furthermore, since a strongly con-
cave function (so coercive) defined on a closed set has a maximizer (Corollary 11.17 in Bauschke
and Combettes (2011)), strong concavity of J guarantees existence of a solution to the dual prob-
lem. Existence of an optimal contract is then immediate from strong duality as in Proposition 3.
The proof is now complete. []

A.5. Proof of Proposition 7

We first show that under the given conditions, the dual value function J takes —oo as a value: to
be precise, limy; . 3™ (z) = —c0 whenever z; > 0.

Suppose that the utility function u is unbounded below, so that the dual convex functional ¢
takes oo for g < 0. We break up the truncated function 3 into two pieces, to write

3M(z) = —M-Pr(z1+2L(S) < 0l) — E |¢ (21 + 22L"(5)) Uz 2yre(5)201 | s

+z1(p(a) + V) + 229/ (a).

Observe that whenever the ratio L? is unbounded, the event {s € S : z; + z2L%(s) < 0} occurs
with positive probability for every z; > 0. Hence the first term in (A.5) tends to —co as M grows
large, whereas the other terms are independent of M. Moreover, since ¢ is finite-valued in the
region [0, 00) and thus is convex by Lemma 1, we apply Jensen’s inequality to obtain

E [¢ (21 4+ 22L"(9) ey yros)zpla] = ¢(E[max{z1 +2L%(S), 0} |a] ) > —oo.

Hence the function JM diverges to —oo for every z; > 0.

On the other hand, the dual value function J takes a finite value at z; = 0 regardless of z;. This
tells us that a solution to the dual problem, if it exists, must occur at the corner (z;,0). When
zo = 0, however, the function J boils down to the same form as the one under perfect information.
Consequently, the dual problem has a unique solution at (zf,0), where zf' > 0 indicates the unique
solution to the first-best dual problem. In case of the utility function increasing along an oblique
asymptote, limg 0 #'(w) = 1/x, the associated functional ¢ tends to oo on [x,00). So if L? is
unbounded (above), for every z; > 0, the variable z; + z;L?(S) would traverse the region [k, )
with positive probability. Therefore, J attains a global maximum at the same point. We omit the
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detail.

Based on the structure of the dual problem, we next prove non-existence of an optimal contract
in the primal problem. In line with the previous results, the key is strong duality which creates a
link between the two problems. To proceed, given a pair of multipliers z > 0, let w, denote the
contract characterizing the dual convex functional ¢. Rewriting J in terms of w,, we obtain

I(z) = L(wz;z) = E[wy(S)|a] + 21 (V= V(wg,a)) — 22Va(wy, a). (A.6)

Observe that since w, > w, the first term of J in (A.6) is bounded below regardless of z. Nev-
ertheless, as is shown above, the expression J takes —co whenever z, > 0. This implies that
z21(V — V(wg,a)) — z2Va(w,,a) < 0 for every z > 0, and therefore the non-degeneracy condition
(ii) in Theorem 1 is met.

To complete the proof, suppose to the contrary that there is a feasible contract @ that achieves the
constrained minimum: C(a) = E[®(S)|a]. Note that this is sufficient for the primal problem to be
feasible, and thus €(a) < co. Then strong duality holds by Theorem 1, so we have C(a) = J(zf,0).
Put it another way, the contract @ results in the first-best value, and consequently, J(zF,0) =
£(w; zF,0) by definition. This suggests that @ should be equal almost everywhere to w,r, =
w*(zF), the contract which uniquely determines the dual value. However, the latter promises
to the agent fixed pay regardless of outcomes, violating the incentive constraint. Therefore, the

constrained minimum is never achieved by any feasible contracts. []

A.6. Proof of Proposition 10

Given an intended action a, denote by L = sup, L?(s) € (0,00) the least upper bound for the
likelihood ratio. Given the condition on u, the associated dual convex functional ¢ takes the
value oo on the interval (x,00]. Hence, in order to maximize J given zo > 0, we must have
z1 < —yf + « so that g,(s) < « for all possible scores s, for otherwise the function J would
tend to —oo. Consequently, the dual problem max,cr J(z) becomes constrained over compact set
I'={z>0:2z +2zL < «}. Since the objective function is continuous on this set, it follows by the
extreme value theorem that the dual problem possesses a solution z* in I'.

We next follow the proof of Proposition 3 to complete the proof. It remains to show that the
given conditions on ¢ implies J»(z*) = 0. To this end, observe that for every z € I', we have

B(z2) = —E |¢/(02(9))L (S iy, <] — B |¢(4(9))L" (S pacg,ip] + ¥/ (a).

In this expression, the first term is bounded for every z, whereas the second term grows arbitrarily
large, due to the condition (12), as z is close to the boundary of the set I so that z; + zoL — . This
proves that the solution z* should be an interior point of I', and therefore, ij(z*) = 0 follows.
Consequently, the contract w,+ obtained from the dual approach is feasible, and existence is thus
guaranteed by Corollary 2. [
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B. The Banks Inequality

The next inequality is due to Banks (1963), which is widely adopted in literature to establish
comparative statics results (e.g., Quah and Strulovici (2009)).

Lemma B.1. Let L be a measurable real-valued function defined on a measure space (S, F,v), and let
¢ : R — [0, 00) be a nondecreasing function. If [¢ L(s)dv(s) = 0, then [ ¢(L(s))L(s)dv(s) > 0.

PROOF OF LEMMA B.1: For each x € R, define A(x) = {s € S : ¢(L(s)) > «}. Then by Fubini’s
Theorem, we have

[Loweneats = [7( ] v )ax

Since ¢ is nondecreasing, the set A(x) takes a form of A(x) = {s € S : L(s) > «’} for some «’.
Then the result follows from the fact that [¢ L(s)dv(s) = 0 implies fA(K) L(s)dv(s) > 0 for every
k € [0,00). O
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