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Abstract

This paper develops a method for combining sign and parametric restrictions in SVARs by means of
Givens matrices. The Givens matrix is used to rotate an initial set of orthogonal shocks in the SVAR.
Parametric restrictions are imposed on the Givens matrix in a manner which utilises its properties.
This gives rise to a system of equations which can be solved recursively for the ‘angles’ in the
constituent Givens matrices to enforce the parametric restrictions. The method is applied to several
identifications which involve a combination of sign restrictions, and long-run and/or
contemporaneous restrictions in Peersman’s (2005) SVAR for the US economy. The method is
compared to the recently developed method of Aries, Rubio-Ramirez and Waggoner (2018) which
combines zero and sign restrictions.
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Combining sign and parametric restrictions in SVARs by Givens rotations
1. Introduction

The sign restrictions approach to separating the shocks in a structural vector-autoregression (SVAR)
into economically interpretable shocks has become increasingly popular. The sign restrictions
approach was first introduced by Faust (1998), Canova and De Nicol6 (2002) and Uhlig (2005). It
involves generating many sets of impulse responses and judging whether each set should be
retained or rejected on the basis of the signs of the responses. The retained responses are
summarised from which conclusions are drawn. The expected signs of the responses i.e. the sign
restrictions typically come from a consensus view of the effects of certain shocks on the economic
variables. Traditionally, the shocks in a SVAR have been identified by parametric restrictions. These
may take the form that a certain shock has a zero contemporaneous effect on a certain variable (a
contemporaneous restriction) or that a certain shock has a zero long-run effect on a certain variable
(a long-run restriction). Long-run zero restrictions are typically motivated by long-run neutrality
propositions in economics and contemporaneous zero restrictions are often motivated by the notion
that economic agents can only observe data on key economic variables with a one period delay (due
to information lags).

In this paper, we develop a method to combine sign and parametric restrictions in a SVAR. This
method involves rotating an initial set of orthogonal shocks in a SVAR by means of a Givens rotation
matrix. The parametric restrictions are imposed on the Givens rotation matrix in a particular way,
utilizing the properties of the constituent Givens matrices. The restrictions can be both
contemporaneous and long-run, and be zero or non-zero restrictions. Although we apply the method
to a 4-variable SVAR, it can be applied to a SVAR of any dimension. The properties of the Given
rotation matrix are such that when the parametric restrictions are imposed on its constituent
matrices, the resulting set of equations can be solved recursively for the unknowns (the ‘angles’ in
the constituent Givens matrices) that will enforce the parametric restrictions. Baumeister and Benati
(2013) imposed a single zero contemporaneous restriction in a sign restrictions framework that
utilised the Givens matrix and their approach was extended by Haberis and Sokol (2014) to multiple
zero contemporaneous restrictions. We fully develop the method of combining parametric and sign
restrictions using Givens rotation matrices in this paper. We relate this method to the recent
method of Aries, Rubio-Ramirez and Waggoner (2018) who impose the parametric restrictions on
the columns of the rotation matrix generated by the Gram-Schmidt procedure. Their approach can
only impose zero restrictions whereas the method which utilises Givens rotations can accommodate
non-zero restrictions. Both methods share the characteristic that in a SVAR of N variables, at most N-
1 parametric restrictions can be placed on the first shock, N-2 on the second shock and so forth.

The method is developed in the context of the four variable SVAR of Peersman (2005). Peersman
identifies his SVAR first by using parametric restrictions alone and then by using sign restrictions
alone. In this paper, we show first how to impose the full set of parametric restrictions which were
chosen by Peersman using Givens rotation matrices. This is instructive because it demonstrates two
key features of the procedure. The first is that the resulting set of equations is recursive so that the
free parameters in the constituent Givens matrices can be solved for to enforce the parametric
restrictions. The second is that the rank condition for parametric identification of the SVAR is
apparent which is that the shocks for any order must have 3-2-1-0 restrictions placed on them. We
then turn to full identification of the shocks in Peersman’s model by sign restrictions alone using
Givens rotations. We generate draws of the Givens matrix using a different method to Peersman’s
method. We show that the method we utilise will generate a Givens matrix which is equivalent to an
orthogonal matrix produced in a QR decomposition. Having developed the method for the two polar
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cases, we then develop it for the case of primary interest, namely, for sign restrictions used in
combination with parametric restrictions. The method is used to implement five identifications in
Peersman’s model which involve a combination of sign and parametric restrictions.

The structure of the paper is as follows. Section 2 describes the structural model of Peersman.
Section 3 discusses the properties of Givens matrices. Section 4 implements the full parametric
identification of Peersman’s model by utilising Givens rotation matrices. Section 5 implements the
full sign restrictions approach where the constructed Givens matrix is equivalent to the orthogonal
matrix from a QR decomposition. Section 6 presents the method to combine sign and parametric
restrictions. Section 7 presents the results from five identification schemes which use a combination
of sign and long-run and/or contemporaneous zero restrictions in Peersman’s model. Section 8
describes the method of Aries, Rubio-Ramirez and Waggoner (2018) for one of our identifications
and relates it to the Givens approach. Finally, section 9 concludes.

2. The structural model

The methods in this paper are applied to the four-variable vector-autoregressive (VAR) model of
Peersman (2005). In Peersman’s model, the variables are the price of oil (0,), output (Y,),

consumer prices (P,) and the short-term interest rate (i,). Peersman treats the oil price, output

and consumer prices as I(1) variables and the interest rate as an I(0) variable. Let Z, be the vector of

variables that enter the VAR. The (1) variables are differenced once before entering the VAR so that

NV
z,=(Ao, Ay, Ap, i) . The reduced-form vector moving average representation is:
z, = D(L)g, (1)

where D(L)=(1 + D,L+D,L* +...), L is the lag operator and €, ~ (0,Q). The reduced-form
errors (€,) are orthogonalized by finding a matrix, A)_l, such that Q = Ao_l(A)_l)'. In this paper, the

matrix A)_l is obtained from an eigenvalue decomposition of €2, but it could also be obtained from

a Cholesky decomposition in which case it is lower triangular. This gives:
z,=D(L)A'Ag, (2

The orthogonalized shocks (A€,) are rotated using the Givens rotation matrix G, which has the

property that GG'=G'G = |, to form a new set of orthogonalized shocks. The matrix G is (4x4) as
the model has four variables. Utilising the Givens matrix in Eq. (2), it can be written as:

z,=D(L)A'GG'Ag, (3)

and the new set of orthogonal shocks is & = G'Ag,. The impulse responses to the new set of

orthogonal shocks is given by:

C(L)=D(LA'G (4)
The long-run response of the variables to the new orthogonal shocks is given by:

C()=D(HA'G (5)

The contemporaneous response of the variables to the new orthogonal shocks is given by:



C(0)=A'G (6)
since D(0) = |. We now turn to the properties of the Givens rotation matrices.
3. Properties of Givens matrices

In the four variable case, there are six Givens matrices. They are G(68,,), G(6,;), G(8,,), G(6,;),
G(6,,) and G(8,,). They are formed by taking the (4x4) identity matrix and setting
G" (6;) =cos b Gij(@ij) =—sind,, G J1(6’".) =sing,, G (6;) = cos &, where the superscripts

ij° ij° ij?

refer to the row and column of G(&;). For example, the Givens matrix G(6,,) is

0 0
0 0

0
G-,
W 0 cosf,, -—sindg,,
0

(7)

oS O o =

siné,, cos6,,

To be economical in notation, we will write C; for cosé; and s; for sing; when we write the

Givens matrices so, for example, the above matrix will be written as:

1 0 O 0

G(0,) = 01 0 0 @)
0 0 ¢, -sy
0 0 s cy

The Given matrices have the property that they are orthogonal so that
G(6,)'G(6;) =G(6;)G(6;) = |. The Givens rotation matrix G that we will use to rotate the

initial set of orthogonal shocks (A)€,) to form the new set of orthogonal shocks (G'Ag,) is

constructed as the product of the six Givens matrices i.e. as:
G =[G(6,)G(6,)G(6,)]1[GC(6,)G(6,)][G(8,,)] (9)
and it has the property that G'G =GG' = |.
The matrix G has the form:
C12C13C14 % ok 3k
S]2C13C14 * ok 3k

* ok ok
SI3CI4

* % %
Sia

G= (10)

The first column of G depends only on the angles 6,,, 6,; and 6,,. Moreover, it can be shown that

the first column of G is the same as the first column of [G(6,,)G(6,,)G(6,,)]. Now define

G =[G(6,,)G(4,)1[G(6,)] (11)

It can be established that:



S
S
S

*

(12)

The first column of G is the unit basis vector and the second column depends only on the angles

6,, and 6,,. It can be shown that the first two columns of G are the same as the first two columns
of [G(6,,)G(8,,)]. Finally, Eq. (8) shows G(6,,) from which it can be seen that the first two

columns are unit basis vectors and the third column depends only on the angle &,,.

We will show how identification of the structural shocks in Peersman’s model can be implemented
using Givens rotation matrices under either a full set of parametric restrictions, a full set of sign
restrictions or by a combination of parametric and sign restrictions. We now turn to the first case of
full parametric identification of the shocks.

4. Identification by parametric restrictions

Peersman identified the structural shocks first by parametric restrictions alone and then by sign
restrictions alone and compared the impulse responses from both methods. In this section, we show
how to implement the parametric restrictions which Peersman utilised by means of Givens rotations.
The parametric restrictions identify the shocks as either a monetary policy (MP) shock, an aggregate
demand (AD) shock, an aggregate supply (AS) shock or an oil price (OP) shock.

In a four variable model, six parametric restrictions are required to identify the structural shocks.
This is the order condition for identification of the shocks. Peersman utilised two long-run zero
restrictions and four contemporaneous zero restrictions and they are:

R1: The MP shock has a zero long-run effect on output

R2: The MP shock has a zero contemporaneous effect on output
R3: The MP shock has a zero contemporaneous effect on oil prices
R4: The AD shock has a zero long-run effect on output

R5: The AD shock has a zero contemporaneous effect on oil prices
R6: The AS shock has a zero contemporaneous effect on oil prices

The rank condition for identification of the structural shocks is satisfied here because the shocks for
some order have 0-1-2-3 restrictions placed on them. Here the order is 3-2-1-0 i.e. three for the MP
shock, two for the AD shock, one for the AS shock and zero for the OP shock. This is a result from
Rubio-Ramirez, Waggoner and Zha (2010) who derive the conditions for rank identification in SVARS
for a wide range of situations, and this is their result for the situation here.

As there are three restrictions on the MP shock, we will treat the first orthogonal shock as the MP
shock because there are three parameters in the first column of the matrix G that are to be
determined. In Eq. (5), which shows the long-run response of the variables to the shocks, denote the

' For example, if the shocks for some order had 1-2-2-1 restrictions on them, the SVAR is not identified
because the rank condition is violated. The order condition is satisfied but it is only necessary and is not
sufficient for identification.



typical element of D(1)A," as b;. The elements of D(1)A," are obtained from estimation of the

reduced-form VAR. The first restriction on the MP shock i.e. R1, is obtained by multiplying the
second row of D(l):%_1 with the first column in G, shown in Eq. (10), and setting the expression to

zero to obtain:
b21C12013CI4 + b22812C13C14 + b23sl3cl4 + b24sl4 = 0 (13)

Divide both sides of Eq. (13) by C,,C;;C,, to obtain:

t t
by +byty, +by == +b,, —2—=0 (14)
C12 CIZC13
Sin(gij) Sij
where we have used the result that tan(6;) =———— i.e. in current notation t; =—.
cos(6;) Ci

In Eq. (6), which shows the contemporaneous response of the variables to the shocks,

denote the typical element of A)_l by a;, and these are known from the decomposition of €2. The

second restriction on the MP shock, namely R2, is obtained by multiplying the second row of Ag1

with the first column of G, and setting the expression to zero. Then divide both sides by C,,C,C,, to

obtain:

t t
ay +ay,t, +a,; -+ ayy =0 (15)
C12 C12C13
The third restriction on the MP shock, i.e. R3, is obtained similarly, i.e. by multiplying the first row of
A" with the first column of G, to obtain:

t t
a, +apt, +a,; -+ a, H-=0 (16)

12 C12C13

Egs. (14), (15) and (16) constitute a linear system of equations which can solved for:

t, = fl(aijobij) (17)
t1_3= fz(aijabij) (18)
Ci
t14 — f3(aij9bij) (19)
12C13

where each solution is a function of the set of parameters i.e. the a; and bij that appear in the

system. From Eq. (17), we obtain the estimated value of 6,, as:

6, =arctan[ f'(a;,b;)] (20)



Once we have found 6,,, we have also found C;, which we write as C,(6,,), i.e. cos,,. Then we

can find 913 from Eq. (18) as:

6, =arctan[c,,(6,) f*(a;,b;)] (21)
We then find 914 from Eq. (19) as:

6, =arctan[c,,(0,)c,; (9, F*(a;,b;)] (24)
Having found these, we calculate the matrix [G(élz)G (913)(3(@14)], which we denote as:

G' =[G(6,)G(6,)G(8,,)] (25)
Write Eq. (5) as:
C(l)=D()A'G'G (26)

where G is shown by Eq. (11) and denote the typical element of D(I)P\;IGl as bb., which we

IJ’
have now all found. Similarly, write Eq. (6) as:
C(0)=A'G'G (27)
and denote the typical element of AO’IG1 as aa, which are all obtained. We note that post-

multiplication of the matrix in Eq. (26) and in Eq. (27) by G will leave the first column unchanged
thereby leaving the restrictions on the first shock unaltered. Now there are two restrictions on the

AD shock and as there are two free parameters in the second column of G, which are 6, and 6,

(see Eq. (12)), we nominate the second orthogonal shock as the AD shock. Then the restriction R4,
namely that the AD shock has a zero long-run effect on output, is obtaining by multiplying the

second row of D(1)A,'G' by the second column of G, and setting the resulting expression to zero.

After dividing both sides by C,.C,,, we obtain:
t24
bb,, +bb.t,, +bb,, 2£ =0 (28)
CZ3

Similarly, the restriction that the AD shock has a zero contemporaneous effect on the oil price (R5)
can be obtained as:

t
aa,, +aa;t, +aa,=+=0 (29)
23

Egs. (28) and (29) constitute a linear system of equations which can be solved for

t,, = g'(aa;,bb)) (30)
zﬂ = g’(aay,bb,) (31)
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where each solution depends on the parameters in the system. From Eq. (30), the estimated value of
0,, is:

éz3 =arc tan[gl(aij 5 bij )] (31)
and from Eq. (31), the estimated value of 8,, is:
6A’24 =arctan[C,, (én)gz(aij =bij )] (32)

We can now calculate the matrix [G(é%)G(éM)] and we know that the first two columns of this

matrix are the same as the first two columns of G. Now let

G’ =[G(6,,)G(6,,)] (33)
and write Eq. (27) as:

C(0)=A'G'G’G(6,,) (34)
We treat the third orthogonal shock as the AS shock as there is only one parametric restriction

placed on it and there is only one free parameter in the matrix G(8,,). We emphasize that post-

multiplication of the matrix A,'G'G” by G(6,,) will leave the first two columns unchanged so that
the restrictions already imposed on the first two orthogonal shocks are unaltered. Denote the typical
element of the matrix AO_IGIG2 as aaa;. The restriction on the AS shock, i.e. R6, namely, that it has
a zero contemporaneous effect on the oil price, is obtained by multiplying the first row of AglGle
with the third column of G(l934). Setting the resulting expression to zero and dividing both sides by

C,, we obtain:
aaa,; +aaa,t, =0 (35)
Solve this equation to get the estimate of &,, as:

A

—aaa
0,, = arc tan(——2) (36)
aaa,,

Now we can calculate G(é34) and find all the elements of G, viz, G = GlGZG(é34).

This method produces estimates for the all of the free parameters (angles) when it is the case that
the SVAR is identified by parametric restrictions alone. Under full parametric identification, there are
six restrictions in Peersman’s model, and they are implemented by solving for the six (9ij parameters
in the Givens rotation matrices. We now turn to identification of the shocks by sign restrictions alone,
and in this case, the six (9ij parameters in the Givens rotation matrices are generated randomly.

5. Identification by sign restrictions

Under full sign restrictions, all of the parameters in the Givens rotation matrix are generated. For
each generated Givens matrix, a new set of orthogonal shocks are formed to which impulse
responses are calculated and are judged for either acceptance or rejection by the sign restrictions.
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This procedure is repeated until a predetermined number of sets of impulse responses are accepted
and that may take many thousands of repetitions. Each repetition involves another draw of the 6’ij

parameters in the Givens rotation matrix, and in Peersman’s model as we have seen, there are six of
them. In this section, we present a method to draw the six 9ij parameters to form the Givens

rotation matrix. We show that when the parameters are drawn in this way, the Givens rotation
matrix is equivalent to the orthogonal matrix produced by the QR decomposition method.

First, consider the matrix [G(6,,)G(6,;)G(6,,)] which we know has the same first column as G,
which is shown in Eq. (10). Now generate a (4x1) vector Z with each element Z, randomly drawn

froma N(0,1) distribution and normalize each element by the norm of Z. The normalized vector is

W, where W, = 7, /\/212 +2;+12; +2; for i=1,2,3,4. Then equate each element in the first

column of [G(6,,)G(6,,)G(8,,)] with the corresponding element in the vector W. By Eq. (10) this

produces:

Ci2CisCiy =W, (37)
$12C13C, =W, (38)
Si3Ciy =Wy (39)
Sy =W, (40)

t.=—2 (41)
12 Wl
which gives
A W
6,, =arctan (—zj (42)
Wl

Similarly, divide Eq. (39) by Eq. (38)
t,=s,— (43)
from which we get

g, =arc tan(su(élz)%J (44)
w

2
Finally, divide Eq. (40) by Eq. (39) to get

W,

t,=s; Ws

(45)

from which we have:



6, =arc tan(sw(ém)%) (46)
w

3

Second, consider the matrix [G(8,,)G(6,,)], which we know has the same second column as G,
which is shown in Eq. (12). Now generate a (3x1) vector Z with each element Z, randomly drawn
froma N(0,1) distribution and normalize each element by the norm of Z. The normalized vector is
W, where W, = Z, //Z] + Z} + 22 for i =1,2,3. Then equate each (non-zero) element in the

second column of [G(6,,)G(8,,)] with the corresponding element in the vector W. By Eq. (12) this

produces:
CCoy =W, (47)
8oy =W, (48)
Sy = ~3 (49)

Solving as before, we obtain:

0,, = arctan (&j (50)
Wl
6,, =arc tan(sx(éx)&J (51)
W2

Third, consider the matrix G(é,,). Generate a (2x1) vector Z with each element Z randomly

drawn from a N(0,1) distribution and normalize each element by the norm of Z. The normalized
vectoris W, where W, =Z, //Z +Z, for i =1,2. Then equate each (non-zero) element in the

third column of G(6,,) with the corresponding element in the vector W. By Eqg. (8) this produces

C,, =W, and S,, =W, from which we obtain:

A W
0., = arctan [TZJ (52)
Wl

Having obtained estimates for all of the (9ij parameters, the Givens matrix G is calculated (see Eq.

(9)), and the new set of orthogonal shocks is calculated and the impulse responses are obtained. The
procedure is repeated by taking another set of draws from the standard normal distribution to
calculate another Givens matrix, which is used to form another set of orthogonal shocks for which
impulse responses are obtained.

This method of generating the Givens matrix will produce an orthogonal matrix which is the same as
the orthogonal matrix produced by the QR decomposition. The QR decomposition involves forming
the matrix W, which is (4x4) in our application, by drawing each of its columns randomly from a

N (0, 1,) distribution, and performing the QR factorization of W on each draw. This factorization is

W =QR, where Q is an orthogonal matrix and R is upper triangular. The Givens matrix G, formed
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in the manner described above, will be the practically same as the matrix Q formed from the QR
factorization of W. To see this, Figure 1 shows the empirical distribution of each element in the G
and Q matrices, respectively, generated from one hundred thousand of them. The figure shows that
the empirical distributions of each element overlap and are practically indistinguishable. There are
other ways to find the ¢9ij parameters in the Givens rotation. Peersman (2005) draws each of the six

(9ij parameters directly from a uniform distribution over the interval [0,7] to form G. In this case,

the empirical distributions of some of the respective elements in the G and Q matrices do not

coincide so that this method of generating the Givens rotation produces an orthogonal matrix which
is not the same as that produced by the QR factorization.

The sign restrictions on the impulse responses utilised by Peersman (2005) are shown in Table 1
below.

Table 1. Sign Restrictions

Shock\Variable Oil Price Output Consumer Prices Interest rate
oP 20 <0 >0 20
AS ? >0 <0 <0
AD 20 >0 >0 20
MP <0 <0 <0 20

In the table, the designation “>0” denotes a non-negative response so that the variable does not fall
in response to the shock while “<0” denotes a non-positive response so that the variable does not
rise in response to the shock. The designation “?” denotes an unrestricted response. Peersman does
not sign restrict the response of oil prices to an AS shock. In order to separate the OP shock from the
AS shock, the shock which has the largest contemporaneous effect on the oil price is treated as the
OP shock. This is a size restriction. The sign restrictions are standard. For example, they rule out
‘output’ and ‘price’ puzzles so that in response to an MP shock which raises the interest rate, oil
prices, output, and consumer prices cannot rise. The number of quarters over which the sign
restrictions are applied to the impulse responses is four quarters for output and consumer prices
and one quarter for the oil price and the interest rate.

We now turn to identification of the orthogonal shocks under a combination of parametric and sign
restrictions.

6. Identification by combining parametric and sign restrictions.

In this section, we consider five different identifications of the orthogonal shocks which involve
some combination of parametric and sign restrictions.

6.1 Identification A

We restrict the first two orthogonal shocks to have a zero long-run effect on output. This removes
the sign restrictions on the response of output to the first two orthogonal shocks shown in Table 1.
The sign restrictions that are left are sufficient to separate the first two orthogonal shocks as either
the MP or AD shock. The other two orthogonal shocks are separate from these as they can have a
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long-run effect on output and they are separated as either the AS or the OP shock by the size
restriction.

The restriction that the first orthogonal shock has a zero long-run effect on output is given by Eq. (14)
which is reproduced below:

t13 t,
b21 + bzztlz + b23 + b24 =0
Cp, C,C5

As there is only one parametric restriction on the first orthogonal shock, we generate the values for
6,, and 6,,, substitute these into Eq. (14) and solve for ,,. To generate values for the two

parameters, we follow an analogous procedure to that in the preceding section. Generate a (3x1)
vector Z with each element z, randomly drawn from a N(0,1) distribution and normalize each
element by the norm of Z. The normalized vector is W, where W, =7, / [z} + 2] + 2] for

I =1,2,3. Then equate the first three elements in the first column of [G(8,,)G(6,,)G(6,,)] with
the corresponding element in the vector W. This will produce the system of equations given by Eq.
(37), Eq. (38) and Eq. (39) which can be solved for én and 913 given in Eq. (42) and Eq. (44),
respectively. Substitute these values into Eq. (14) to get:

@ ) . t
b, +b,t,(8,)+b 5:00) — = (53)
R 6 e Ben G
Then solve for 1, from which we obtain 914 as:
é14 _ arctan —C12(912)C13(913)(b21+b t12(912)+b23 (((9A ))J (54)
24 12

The restriction that the second orthogonal shock has a zero long-run impact on output is given by Eq.
(28) which is reproduced below:

bb,, +bb, t,, + bb,, 2 = 0
C23

We generate the value for 6,, and solve from this equation for the value of 6,,. We start by

generating a (2x1) vector Z with each element Z, randomly drawn from a N (0,1) distribution and

normalize each element by the norm of Z. The normalized vector is W, where W, =12/ le + 222
for i =1,2. Then equate the second and third elements in the second column of [G(68,,)G(6,,)]

with the corresponding element in the vector W. This produces the two equations given by Eq. (47)

and Eq. (48), respectively, which are solved for 0.., shown by Eq. (50). Substitute 923 into Eq. (28)

23>

and solve for 6,, to get:

6,, =arctan _CE;’—(Q”)(bbD +bb,it,,(6,,)) (55)

24

12



Finally, we generate the value for 8,, using the method described earlier that produces the value of

it given by Eq. (52).

Here we solve for the parameter 6,, after generating the values for 6,, and 6, and solve for the

parameter 6,, after generating the value for ,;. The parameter 8,, is generated. The number of
parameters which are solved for is equal to the number of parametric restrictions while the number

of remaining parameters is equal to the number of parameters that are generated. Once the values
of all the parameters are obtained, the Givens rotation matrix is obtained from Eq. (9).

6.2 Identification B

We extend Identification A by adding a further parametric restriction which is that the third
orthogonal shock does not have a contemporaneous effect on the interest rate. This restriction is
similar to that used by Cushman and Zha (1997) and Kim and Roubini (2000). The third parametric
restriction separates the third and fourth orthogonal shocks so that there is no need for the size
restriction, and when the responses to the third shock satisfy the remaining sign restrictions, it is
interpreted as the AS shock.

Instead of generating the value of the &,, parameter as we did for Identification A, we obtain its
value from the equation for the restriction on the third orthogonal shock. Analogous to the
development following Eq. (34), this restriction gives the estimate of &,, as:

A —aaa,,

0,, = arc tan(
aaa,,

) (56)

We now calculate G and proceed to obtain the impulse responses.
6.3 Identification C

As before we restrict the first two orthogonal shocks to have a zero long-run effect on output and
we further restrict the first orthogonal shock to have a zero contemporaneous effect on output, so
there are now three parametric restrictions. These parametric restrictions are used in place of the
sign restrictions on the response of output to the first two orthogonal shocks, and the sign
restrictions that remain are sufficient to separate them as either the MP shock or the AD shock. The
other two orthogonal shocks are separate from these by the parametric restrictions, and are
separated from each other as either the AS or the OP shock by the size restriction.

The restrictions that first orthogonal shock has a zero long-run and contemporaneous effect on
output are shown by Eq. (14) and Eqg. (15), respectively. As there are only two parametric restrictions

on the first orthogonal shock, we generate the value for 6,, and solve for 6, and 6,, from Eq. (14)
and Eq. (15). To generate the value for 8,,, we generate a (2x1) vector Z with each element Z
randomly drawn from a N(0,1) distribution and normalize each element by the norm of Z. The
normalized vector is W, where W, =z, / |z} +Z. for i =1,2. Then equate the first two elements
in the first column of [G(6,,)G(6,,)G(8,,)] with the corresponding element in the vector W. This

will produce the two equations given by Eq. (37) and Eq. (38) which can be solved for élz given in Eq.
(42). Substitute into Eq. (14) and Eq. (15) to get, respectively:
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t14

b, +b,t,(0,)+b, —3—+h, — 4 = (57)
noomee 23 Cp, (912) * Clz(‘glz)cn
ts t,
a, + aaztlz(eu) tay——ta,— —= 0 (58)

() cy(Bh)es

Eq. (57) and Eq. (58) are a linear system of two equations in the two unknown t; and t, /c,;. The

solution can be characterised as:

=h' (t12(912) Clz(‘912)> ij > u) (59)

t R R
Cl_4: hz(tu(eu)acu(eu) a;,h; ) (60)

> Yij s Mij
13

where the &; and bij are those in Eqg. (57) and Eq. (58). We solve these two equations recursively as

before to get:

913 =arctan[h' (tlz(en) C12(012)7 2 0] (61)

6?14 —arctan[cl3(913)h (tlz(elz) c12(012), i205)] (62)

We now proceed to impose the parametric restriction that the second orthogonal shock has a zero
long-run effect on output. This development follows exactly what was done for identification A.

Under Identification C, we solve for three of the parameters, namely, (913, 9 and (94 as there are

three parametric restrictions and three of the parameters, namely, 6,,, 6,; and 6,, are obtained

by the generation method.
6.4 Identification D

Fisher, Huh and Pagan (2016) re-considered Peersman’s model by replacing the oil price in the
vector of variables by the relative oil price, defined as the difference between the log oil price and
the log of consumer prices. They imposed four long-run parametric restrictions and two
contemporaneous restrictions. The long-run restrictions were that the MP and AD shocks had a zero
long-run effect on output and relative prices.

For Identification D, we impose an equivalent set of long-run restrictions. They are that the first and
the second orthogonal shocks have a zero long-run effect on output and that each changes the oil
price and consumer prices by the same amount in the long-run. The parametric restrictions only
replace the sign restrictions on the response of output to the first two orthogonal shocks. The sign
restrictions on the responses of the other variables to the first two orthogonal shocks have to be
retained as otherwise these two shocks cannot be separated as either the MP or AD shock. The
other two orthogonal shocks are separate from the first two as no parametric restrictions are placed
on them, and they are separated from each other by the size restriction.

The restriction that the first orthogonal shock has a zero long-run effect on output is given by Eq. (14)
which is reproduced below:
t13 t,
b21 + bzztlz + b23 + b24 =0
12 C12Cl3
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The restrictions that the first shock changes both oil prices and consumer prices by K in the long-run
are, respectively:

t t
b11+b12t12+b13i+b14 B =k (63)
Cp C,C;
b, +bot, +b, 1 (64)
31 3ot T M3 34
Cp, C,C5

By equating Eq. (63) with Eq. (64), we obtain the restriction that the first shock changes the oil price
and the consumer price by the same amount in the long-run and it is:

t14

t
(bn _b31)+(b12 _b32)t12 +(b13 _b33)cl_3+(b14 - 34) =0 (65)

12 12¥13

We generate a value for 6,, using the method as before, and we denote it as éu- We then solve Eq.

(14) and Eq. (65) as before for 913 and 914.

The restriction that the second orthogonal shock has a zero long-run effect on output is given by Eq.
(28) which is re-produced below:

bb,, +bb,.t,, +bb,, 2 = 0
C

23

Following an analogous development as above, the restriction that the second orthogonal shock
changes the oil price and the consumer price by the same amount is:

t
(bb,, —bb;,) + (bb,; —bb;,)t,, + (bb, — bb34)02_4 =0 (66)

23

Eq. (28) and Eq. (66) are two equations in the two unknowns t,; and t,, / C,;. Solve for both as

before and obtain 6,, and 6,,. Then generate 6,,. Having obtain estimates for all the parameters,

we can obtain G.

From Eq. (63) or Eq. (64), it can readily be seen that this method can handle the case of non-zero
restrictions, which can arise in empirical macro-econometrics.

6.5 Identification E

For Identification E, a third restriction is imposed on the first orthogonal shock in Identification D.
The additional restriction is that this shock has a zero contemporaneous effect on output, and this

913 and 914

using the solution method described previously and proceed as we did before in Identification D
with respect to the other shocks. The three restrictions on the first orthogonal shock and the two on
the second orthogonal shock identify the former as the MP shock and the latter as the AD shock. No
sign restrictions are required to separate the MP and AD shocks here. As before the third and fourth
orthogonal shocks are separated as either the OP or AS shock by the size restriction.

A

restriction is expressed by Eq. (15). We then solve Eq. (14), Eq. (15) and Eq. (65) for &

12>

7. Results
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We now turn to the results from Peersman’s model for each of the identification schemes we
considered earlier. We estimated the VAR using Peersman’s original data which is for the United
States (US) and covers the period 1980:Q1 to 2002:Q2. The data was obtained from the Journal of
Applied Econometrics data archive. Following Peersman, the VAR was specified with three lags and a
constant and a time trend were included in each equation. Peersman allowed for estimation
uncertainty in the VAR. Following his approach, we estimate the parameters of the VAR in a

Bayesian framework. The prior for the VAR coefficients and Q7" is Normal-Wishart. For these priors,

the posterior for the VAR coefficients and Q' is also Normal-Wishart. We report the impulse
responses for the levels of the series.

7.1 Full parametric identification

Figure 2 shows the impulse responses from the full parametric identification of the shocks together
with 84th and 16th percentile error bands. The impulse responses replicate those in Figure 1(a) of
Peersman. The six parametric restrictions clearly show up in the impulse responses. We make the
following observations. In response to a positive AD shock, oil prices and consumer prices rise
permanently but the permanent increase in oil prices is much larger than the permanent increase in
consumer prices. Output rises immediately and returns to its level prior to the shock by eight
qguarters. For the MP shock, which raises the interest rate, oil prices and consumer prices fall
permanently and the permanent decrease in oil prices is much larger than the permanent decrease
in consumer prices. Output rises marginally on impact so there is a slight output puzzle but there is
no price puzzle. Output then falls and after three quarters gradually returns to it level prior to the
shock. The AD and MP shocks have very little impact on output in the long-run.

7.2 Full signs identification

We now turn to the results from full sign identification of the shocks. For each generated Givens
matrix G, we calculate the impulse responses to each of the orthogonal shocks and if the full set of
responses satisfy the sign restrictions for the shocks to be MP, AD, AS and OP shocks in any order,
they are retained. If not, the full set of responses are discarded. We continue to generate the Givens
matrix and calculate the impulse responses until 1000 sets of responses are retained. We arrange
the accepted responses into ascending order at each horizon and find the median of the responses.
The medians are connected point-wise across horizons to form the median impulse response. We
also find the 84th and 16th percentiles of the accepted responses at each horizon and connect them
point-wise across horizons to form the percentile responses.

It is important to note that the median response at each horizon is likely to come from a different
Givens matrix G i.e. from a different set of the six ¢9ij parameters. Because the median response at

each horizon likely comes from a different rotation, the median impulse response function does not
correspond to a single rotation. Fry and Pagan (2011) refer to this as the multiple models problem.
They propose a metric to find the set of impulse responses, from among the set of all accepted
impulse responses, which comes ‘closest’ to the median responses. This set corresponds to a single
rotation i.e. to a single G matrix, and the responses are known as the median-target responses,
which we also report.

Figure 3 reports the median (and median-target) responses, together with the percentile bands, for
the identification from full sign restrictions. The median impulse responses replicate those reported
in Figure 2(a) of Peersman. As observed by Peersman, there are some interesting differences
between the results from this case and the full parametric case. Under signs, there is a large
contemporaneous impact of the AD and MP shocks on the price of oil which suggests that the
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contemporaneous zero restriction for oil prices may be unduly restrictive. The median response of
the oil price to the AS shock is also large but it is quite uncertain as the percentile responses cover
the zero axis. The other noticeable difference is that impact response of output to the MP shock is
substantial. Output falls markedly on impact, rebounds somewhat the next quarter and then falls
further for several more quarters before returning gradually to its level prior to the shock. There is
no evidence of an output puzzle here. The median responses of output to the AD and MP shocks at
long horizons are both close to zero, suggesting monetary neutrality in the long-run.

7.3 Combining parametric and sign restrictions

Figure 4 shows the results under identification A for which there are two parametric restrictions,
namely, that the MP and AD shocks have a zero long-run effect on output. We remark on the
following results. The median response shows that output falls slightly on impact in response to the
MP shock. This response is quite uncertain as the zero impact response is within the two percentile
responses. This is in contrast to the full sign case, where output falls markedly on impact and the
region between the two percentile impact responses is narrow and does not include the zero impact
response. The median response to the AD shock shows that consumer prices rise permanently in the
long-run, whereas under the full sign case, the median response is close to zero at long horizons.

Figure 5 shows the results under identification B. The parametric restrictions are those for
identification A along with the additional restriction that the AS shock does not have a
contemporaneous effect on the interest rate. This restriction is motivated by the observation that
the central bank may not observe the effect on output of a shock in the current quarter because it
may take several quarters for the latest GDP data to be released. As a consequence, it does not
adjust the interest rate within the quarter to an AS shock. This parametric restriction is clearly seen
in the figure as the impact response of the interest rate to the AS shock is zero with no uncertainty.
The median impact response of output to the MP shock is indistinguishable from zero, whereas in
the full sign case, output falls on impact considerably. Figure 6 shows the results for identification C.
The two long-run parametric restrictions are maintained but now the third parametric restriction is
that the MP shock has a zero contemporaneous effect on output. Under this identification, the slight
output puzzle that we saw under full parametric identification re-emerges. Interestingly, the median
response shows a considerable fall in the interest rate on impact following an AS shock, which is also
seen under identification A and full signs identification.

Figure 7 shows the results under identification D where the MP and AD shocks have a zero long-run
effect on output and where they change the oil and consumer prices by the same amount in the
long-run. These restrictions impose long-run monetary neutrality and they clearly show up in the
median responses. In response to the MP and AD shocks, oil prices change by much less in the long-
run under this identification than they did under previous identifications. In response to the AD
shock, the oil price rises by less than 0.1 percentage points in the long-run whereas under the
previous identifications the oil price rose by between 3 and 8 percentage points. In response to the
MP shock oil prices fall by about 0.4 percentage points in the long-run whereas in the earlier
identifications they fell by between 2 and 6 percentage points. The median long-run response of
consumer prices is small, less than 0.1 percentage points, which is similar to that obtained under full
sign identification, but is considerably smaller than that obtained under the other identifications.
The median response of output to the MP shock shows that output falls markedly on impact, which
is also seen under full signs identification. Figure 8 shows the results under the four long-run
restrictions together with the restriction that the MP shock has a zero contemporaneous effect on
output i.e. identification E. The only significant change to the results from identification D is that the
slight output puzzle re-emerges.

17



8. Relationship to the Method of Aries, Rubio-Ramirez and Waggoner (2018)

Aries, Rubio-Ramirez and Waggoner (2018) develop a method to combine sign and parametric
restrictions based on the QR decomposition. They show that the zero restrictions on the impulse
responses can be converted into linear restrictions on the columns of the orthogonal matrix Q. We

briefly describe their method, hereafter referred to as ARW, in the context of identification C which
imposes two long-run zero restrictions and one contemporaneous zero restriction. Following the
development in Section 2, the impulse responses to the new set of orthogonal shocks is given by:

C(L)=D(L)A,'Q (67)

where Q is an orthogonal matrix. Write Q = [q1 g, 0, q4] where each ¢ is a (4x1) vector
orthogonal to the other vectors. As before, let the typical element of D(I)A;l be by and let the
typical element of D(0)A," be a;;, where D(0) = . We treat the shock with the most parametric
restrictions placed on it as the first shock.

The ARW method finds the vector (, which satisfies the two restrictions on the first shock, namely,

that it has neither a contemporaneous nor long-run effect on output. i.e. it finds ¢, such that:

Rg, =0 (68)
where
R — (bZI b22 b23 b24j (69)
: a21 a'22 a23 a24

Their method to find @, proceeds as follows: (i) Find an orthonormal matrix N, whose columns
form a basis for the null space of R,. In this case, N, has dimension two so that it is a (4x2) matrix;
(i) draw a (4x1) vector X, from the standard normal distribution of N (0, 1,); (iii) apply the Gram-
Schmidt method to generate the (4x1) vector ¢, as g, = N,(N/X,/ || N/X, |[), where [[s|| is the

Euclidian norm.

There is one restriction on the second shock, namely, that it has a zero long-run effect on output.
We also require that (, be orthogonal to the already constructed Q, vector. These restrictions can

be expressed as:
R,0,=0 (70)

where

R2 — (bZI b2’2 b23 b24 J (71)
O

The method to find @, proceeds similarly: (i) Find an orthonormal matrix N, whose columns form a

basis for the null space of R,, and this matrix will be (4x2); (i) draw a (4x1) vector X, from the
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standard normal distribution of N (0, 1,); (iii) apply the Gram-Schmidt method to generate the (4x1)
vector @,, as 0, = N,(N;X,/ | NJX, []).

As there are no further parametric restrictions, the ARW method finds (, and Q, so that they are

orthogonal to each other and to ¢, and @,. To find @, (i) form R, = (ql’ q;)' and find an
orthonormal matrix N, whose columns form a basis for the null space of R,,in which case it will be
(4x2); (ii) draw a (4x1) vector X, from the standard normal distribution of N (0, 1,); (iii) apply the
Gram-Schmidt method to generate the (4x1) vector Q,, as 0, = N;(N;X,/ || N3X, []). Finally, to find

q,,(i) form R, =(q/ 0, q;)’ and find an orthonormal matrix N, whose columns form a basis for
the null space of R,, where now it will be (4x1); (i) draw a (4x1) vector X, from the standard normal
distribution of N (0, 1,); (iii) apply the Gram-Schmidt method to generate the (4x1) vector Q,, as

d, = N,(N;X, /| N;X, |]). The orthogonal Q matrix with the three parameter restrictions imposed
is Q= (q1 g, O, q4) . The procedure produces another Q matrix for another draw of the four

vectors X,, X,, Xjand X, and it is repeated many times. Figure 9 shows the results for this

identification under the ARW method. The results are very similar to those shown in Figure 6 which
were obtained from the Givens rotation method.

The ARW method, in common with the method that utilises the Givens rotations, can impose at
most 4 — | zero restrictions for each shock | =1,2,3,4. The ARW method, however, cannot

implement non-zero restrictions because it involves calculating matrices whose columns form a basis
for the null space of the matrix of parametric restrictions i.e. the parametric restrictions are zero
restrictions. For example, the restriction that the first shock changes consumer prices by k =3% in
the long-run cannot be implemented in the ARW method. This restriction can be implemented under
Givens rotations because that method involves solving systems of equations directly. However, that
may not be a significant drawback of the ARW method because quantitative economic theory
seldom delivers precise long-run predictions such that a variable will increase by x-percent in the
long-run. The ARW approach, however, can implement Identification D because the non-zero
restrictions on the shocks can be combined to form zero restrictions, analogous to that shown by Eq.
(65) and Eq. (66).

9. Conclusion

In this paper, we develop a procedure for implementing parametric and sign restrictions using the
properties of Givens rotation matrices. We show how the method works in the context of several
different identifications of the shocks in Peersman’s model (2005) that utilise both sign and
parametric restrictions. We relate this method to the method of Aries, Rubio-Ramirez and Waggoner
(2018). While their method is straightforward to implement and may be more computationally
efficient, it cannot accommodate non-zero parametric restrictions. In future research, we intend to
apply the Givens approach to empirical applications where non-zero parametric restrictions, which
may arise from extraneous information, are used in combination with sign restrictions.
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Figure 1

Empirical distribution of the elements in the Givens and Q matrices, where Q is from a QR

decomposition
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Figure 2

Full parametric identification of Peersman’s model: Two long-run and four contemporaneous zero restrictions
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Figure 3

Full sign indentification of Peersman’s model. Acceptance rate =0.0316%
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Figure 4

Sign and parametric identification of Peersman’s model: Identification A - two long-run zero restrictions, acceptance rate = 0.04608%
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Figure 5

Sign and parametric identification of Peersman’s model: Identification B - two long-run zero restrictions and the AS shock has a zero
contemporaneous effect on the interest rate, acceptance rate = 0.08837%
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Figure 6

Sign and parametric identification of Peersman’s model: Identification C - two long-run zero restrictions and the MP shock has a zero
contemporaneous effect on output, acceptance rate = 0.04306%

olL OUTPUT PRICES INTEREST

W
© o
0
o 03
" 02
a5 0
o
i "
o on{—— o
1 . o
8 12 0
T T ——— T I T T T R T T v LB e s T T T T T T T M e . R
01234 EEEEEEREEEEEEEEEEE N Y] 012345 TR T BN LBEB BT G123 4B TEINNRBUB BT BED A2 7 01234567 880N RBUBHTBRAN2BHEBY
— . et " " " " — o — " " — o — - "
' "
75 It} 0 2
15 a o
5 I3 0 a0 f— — —
. — o7 0 1
0 1 2
[ 42 03
LML e e e A 0T T R A T T T T 0 A A A A A
0123 4567880 f @B BT 2B U557 IRERRE XX ERREAREEEERE Y] IRERRE IEEXAREEEEEEE X 0123456788 0NRAUBHTBRAN2DNB B2
— o — e = " " " " " — o — o m s
5 1
05 0
0
i 0
] s o
02 02
b
o o4
T T T T T T T T T Nt o T T T T T T T T 0 L A A L A A T T T
012345 238557 01234567809 TBRDN2BEBAT 0123456780 UNOBUBEIBDDARBABET V123458 TBaNN RN 288557
— " s — " " — W — " M — o —
o ] 0
©
02 o
a
0 02
©
a
©
" 05 2
T A A A A L T T L s A A s 0 L A L L L L L 5 0 A A A A A o
01234 TESNNRDUERTRODAN DD BE BT IRERRE IRE R XX ERRA R EEEE R Y 0123456 T8 NN RBUBET BN DA 2BNBED 0123456788 0NRBUBHTBRAN2DHB B2
— o — e = " — - — " " — o — " " — o — o m s

26



Figure 7

Sign and parametric identification of Peersman’s model: Identification D - Four long-run zero restrictions, acceptance rate = 0.0903%
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Figure 8

Sign and parametric identification of Peersman’s model: Identification E - Four long-run zero restrictions and the MP shock has a zero
contemporaneous effect on output, acceptance rate = 0.4688%
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Figure 9

Sign and parametric identification of Peersman’s model using Aries et al method: Identification C - two long-run zero restrictions and the
MP shock has a zero contemporaneous effect on output, acceptance rate = 0.0659%
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